Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and holds significant pharmacological potential. Nevertheless, the regulation of energy homeostasis by centrally-produced GLP-1 remains partially understood. Preproglucagon cells, known to release GLP-1, are found in the olfactory bulb (OB).
View Article and Find Full Text PDFRecent approval of the dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, tirzepatide, for the management of type 2 diabetes mellitus (T2DM) has reinvigorated interest in exploitation of GIP receptor (GIPR) pathways as a means of metabolic disease management. However, debate has long surrounded the use of the GIPR as a therapeutic target and whether agonism or antagonism is of most benefit in management of obesity/diabetes. This controversy appears to be partly resolved by the success of tirzepatide.
View Article and Find Full Text PDFThe incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9-36) and GIP(3-42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9-39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6-8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9-36), GIP(3-42), Ex(9-39) (25 nmol/kg bw) or saline vehicle (0.
View Article and Find Full Text PDFAim: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite.
Materials And Methods: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide.
Clin Med Insights Endocrinol Diabetes
March 2021
The therapeutic potential of venom-derived drugs is evident today. Currently, several significant drugs are FDA approved for human use that descend directly from animal venom products, with others having undergone, or progressing through, clinical trials. In addition, there is growing awareness of the important cosmeceutical application of venom-derived products.
View Article and Find Full Text PDFClin Med Insights Endocrinol Diabetes
September 2021
Xenin bioactivity and its role in normal physiology has been investigated by several research groups since its discovery in 1992. The 25 amino acid peptide hormone is secreted from the same enteroendocrine K-cells as the incretin hormone glucose-dependent insulinotropic polypeptide (GIP), with early studies highlighting the biological significance of xenin in the gastrointestinal tract, along with effects on satiety. Recently there has been more focus directed towards the role of xenin in insulin secretion and potential for diabetes therapies, especially through its ability to potentiate the insulinotropic actions of GIP as well as utilisation in dual/triple acting gut hormone therapeutic approaches.
View Article and Find Full Text PDFNeurotensin and xenin possess antidiabetic potential, mediated in part through augmentation of incretin hormone, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), action. In the present study, fragment peptides of neurotensin and xenin, acetyl-neurotensin and xenin-8-Gln, were fused together to create Ac-NT/XN-8-Gln. Following assessment of enzymatic stability, effects of Ac-NT/XN-8-Gln on in vitro β-cell function were studied.
View Article and Find Full Text PDFInitially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2.
View Article and Find Full Text PDFBackground: The antidiabetic effects of the gut hormone xenin include augmenting insulin secretion and positively affecting pancreatic islet architecture.
Methods: The current study has further probed pancreatic effects through sub-chronic administration of the long-acting xenin analogue, xenin-25[Lys PAL], in both high fat fed (HFF) and streptozotocin (STZ)-induced insulin-deficient Ins1 ;Rosa26-eYFP transgenic mice. Parallel effects on metabolic control and pancreatic islet morphology, including islet beta-cell lineage tracing were also assessed.
The aim of this study is to compare head-to-head the effects of dapagliflozin and liraglutide on bone strength and bone material properties in a pre-clinical model of diabetes-obesity. Combined low-dose streptozotocin and high fat feeding were employed in mice to promote obesity, insulin resistance, and hyperglycaemia. Mice were administered daily for 28 days with saline vehicle, 1 mg/kg dapagliflozin or 25 nmol/kg liraglutide.
View Article and Find Full Text PDFRecent studies have characterised the biological properties and glucose-dependent insulinotropic polypeptide (GIP) potentiating actions of an enzymatically stable, C-terminal hexapeptide fragment of the gut hormone xenin, namely Ψ-xenin-6. Given the primary therapeutic target of clinically approved dipeptidyl peptidase-4 (DPP-4) inhibitor drugs is augmentation of the incretin effect, the present study has assessed the capacity of Ψ-xenin-6 to enhance the antidiabetic efficacy of sitagliptin in high fat fed (HFF) mice. Individual administration of either sitagliptin or Ψ-xenin-6 alone for 18 days resulted in numerous metabolic benefits and positive effects on pancreatic islet architecture.
View Article and Find Full Text PDFGastric inhibitory polypeptide (GIP) is a 42 amino acid hormone secreted from intestinal K-cells in response to nutrient ingestion. Despite a recognised physiological role for GIP as an insulin secretagogue to control postprandial blood glucose levels, growing evidence reveals important actions of GIP on adipocytes and promotion of fat deposition in tissues. As such, blockade of GIP receptor (GIPR) action has been proposed as a means to counter insulin resistance, and improve metabolic status in obesity and related diabetes.
View Article and Find Full Text PDFBackground: Anxiety and depression are common, debilitating and costly. These disorders are influenced by multiple risk factors, from genes to psychological vulnerabilities and environmental stressors, but research is hampered by a lack of sufficiently large comprehensive studies. We are recruiting 40,000 individuals with lifetime depression or anxiety and broad assessment of risks to facilitate future research.
View Article and Find Full Text PDFClin Med Insights Endocrinol Diabetes
June 2019
Recent studies have identified a beneficial role for peptide tyrosine tyrosine (PYY) on pancreatic beta-cell function and survival. These effects are linked to the activation of neuropeptide Y1 receptors (NPYR1s) by PYY(1-36). However, PYY(1-36) is subject to rapid degradation by dipeptidyl peptidase-4 (DPP-4), resulting is the loss of NPYR1 activity.
View Article and Find Full Text PDFWe recently reported that brain-specific human β-secretase 1 (BACE1) knock-in (PLB4), a mouse model of sporadic Alzheimer's disease (AD), also develops a severe diabetic phenotype characterised by impaired glucose homeostasis, decreased insulin sensitivity and a fatty liver phenotype. Hence, we here aimed to assess if targeted anti-diabetic therapies (Liraglutide and Fenretinide) would attenuate the diabetic and behavioural phenotype of these mice. PLB4 mice and wild-type (WT) controls were administered Liraglutide or Fenretinide for ten consecutive weeks alongside vehicle-treated mice.
View Article and Find Full Text PDFBackground: Inhibition of the Na+/glucose co-transporter 2 is a new therapeutic strategy for diabetes. It is unclear how proximal loss of Na+ (and glucose) affects the subsequent Na+ transporters in the proximal tubule (PT), thick ascending limb of loop of Henle (TAL), distal convoluted tubule (DCT) and collecting duct (CD).
Methods: Mice on a high fat diet were administered 3 doses streptozotocin 6 days prior to oral dapagliflozin administration or vehicle for 18 days.
Background: Therapeutic benefits of peptide-based drugs is limited by rapid renal elimination.
Methods: Therefore, to prolong the biological action profile of the recently characterized triple-acting hybrid peptide, exendin-4/gastrin/xenin-8-Gln, a fatty acid (C-16) has been covalently attached, creating exendin-4(Lys PAL)/gastrin/xenin-8-Gln. Exendin-4/gastrin and liraglutide/gastrin/xenin-8-Gln were also synthesized as direct comparator peptides.
Enteroendocrine derived hormones such as glucagon-like-peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), gastrin and xenin are known to exert complementary beneficial metabolic effects in diabetes. This study has assessed the biological activity and therapeutic utility of a novel GLP-1/gastrin/xenin hybrid peptide, namely exendin-4/gastrin/xenin-8-Gln hybrid, both alone and in combination with the stable GIP mimetic, (DAla)GIP. Exendin-4/gastrin/xenin-8-Gln increased in vitro insulin secretion to a similar or superior extent, as the parent peptides.
View Article and Find Full Text PDFDiabetes Metab Res Rev
September 2018
Xenin-25 is a 25-amino acid peptide hormone co-secreted from the same enteroendocrine K-cell as the incretin peptide glucose-dependent insulinotropic polypeptide. There is no known specific receptor for xenin-25, but studies suggest that at least some biological actions may be mediated through interaction with the neurotensin receptor. Original investigation into the physiological significance of xenin-25 focussed on effects related to gastrointestinal transit and satiety.
View Article and Find Full Text PDFEnzyme-resistant receptor agonists of the incretin hormone glucagon-like peptide-1 (GLP-1) have shown positive therapeutic effects in people with type 2 diabetes mellitus (T2DM). T2DM has detrimental effects on brain function and impairment of cognition and memory formation has been described. One of the underlying mechanisms is most likely insulin de-sensitization in the brain, as insulin improves cognitive impairments and enhances learning.
View Article and Find Full Text PDFAims: To demarcate pathological events in the brain as a result of short-term to chronic high-fat-diet (HFD) feeding, which leads to cognitive impairment and neuroinflammation, and to assess the efficacy of Xenin-25[Lys(13)PAL] in chronic HFD-fed mice.
Methods: C57BL/6 mice were fed an HFD or a normal diet for 18 days, 34 days, 10 and 21 weeks. Cognition was assessed using novel object recognition and the Morris water maze.
The insulinotropic properties of zebrafish GIP (zfGIP) were assessed in vitro using clonal pancreatic β-cell lines and isolated mouse islets and acute effects on glucose tolerance and insulin release in vivo were evaluated in mice. The peptide produced a dose-dependent increase in the rate of insulin release from BRIN-BD11 rat clonal β-cells at concentrations ≥30nM. Insulin release from 1.
View Article and Find Full Text PDF