Publications by authors named "Victor Garces"

Mineralization of living cells represents an evolutionary adaptation that enhances cellular resilience to physicochemical stress. Inspired by this strategy, we have here developed hybrid living materials (HLMs), incorporating probiotics into mineralized collagen 3D matrices, with the aim of protecting and promoting the successful oral delivery of the bacteria. Collagen fibrils are simultaneously self-assembled and mineralized in the presence of the probiotics (Lactobacillus acidophilus, La, was used as model), resulting in the integration of the probiotics into the hybrid matrix (i.

View Article and Find Full Text PDF

Carbapenems are one of the mainstays of treatment for antibiotic-resistant bacteria (ARB). This has made the rise of carbapenem-resistant bacteria a threat to global health. In fact, the World Health Organization (WHO) has identified carbapenem-resistant bacteria as critical pathogens, and the development of novel antibacterials capable of combating infections caused by these bacteria is a priority.

View Article and Find Full Text PDF

Certain aerobic bacteria produce bacterial cellulose (BC) to protect themselves from UV radiation. Inspired by this natural function, the UV-filtering capacity of wet BC film (BC) and dried BC (BC-Dried) is evaluated and it is concluded that both samples hardly filter UVA, but filter UVB to some extent, especially BC-Dried. Moreover, this filtering capacity does not diminish but significantly increases with time, with efficiencies in the 145-160 min time range equal to or greater than most UV filters of the market.

View Article and Find Full Text PDF

Introduction: Pancreatic cancer (PC) shows a very poor response to current treatments. Development of drug resistance is one of the causes of the therapy failure, being PARP1 (poly ADP-ribose polymerase 1) a relevant protein in the resistance mechanism. In this work, we have functionalized calcium phosphate-based nanoparticles (NPs) with Olaparib (OLA, a PARP-1 inhibitor) in combination with ascorbic acid (AA), a pro-oxidative agent, to enhance their individual effects.

View Article and Find Full Text PDF

Amorphous calcium phosphate nanoparticles (ACP NPs) exhibit excellent biocompatibility and biodegradability properties. ACP NPs were functionalized with two coumarin compounds (esculetin and euphorbetin) extracted from Euphorbia lathyris seeds (BC-ACP NPs) showing high loading capacity (0.03% and 0.

View Article and Find Full Text PDF

Probiotic bacteria were used as carriers of metallic nanoparticles to develop innovative oral agents for hyperthermia cancer therapy. Two synthetic strategies were used to produce the different therapeutic agents. First, the probiotic bacterium was simultaneously loaded with magnetic (MNPs) and gold nanoparticles (AuNPs) of different morphologies to produce AuNP + MNP-bacteria systems with both types of nanoparticles arranged in the same layer of bacterial exopolysaccharides (EPS).

View Article and Find Full Text PDF

Yogurt is one of the most emblematic and popular fermented foods. It is produced by the fermentation of milk lactose by bacteria such as and . Magnetic (MNPs) and gold nanoparticles (AuNPs) were incorporated into the exopolysaccharides (EPSs) of these bacteria.

View Article and Find Full Text PDF

The efficiency of maghemite nanoparticles for the treatment of anemia was sensibly higher when nanoparticles were incorporated onto the probiotic bacterium Lactobacillus fermentum (MNP-bacteria) than when administrated as uncoated nanoparticles (MNP). Plasma iron and hemoglobin, intestine expression of divalent metal transporter 1 (DMT1) and duodenal Cytochrome b (DcytB), as well as hepatic expression of the hormone hepcidin were fully restored to healthy levels after administration of MNP-bacteria but not of MNP. A magnetic study on biodistribution and biodegradation showed accumulation of maghemite nanoparticles in intestine lumen when MNP-bacteria were administrated.

View Article and Find Full Text PDF

We have undertaken a magnetic study on the oral biodistribution and biodegradation of nude maghemite nanoparticles of 10 nm average size (MNP) and probiotic bacteria, Lactobacillus fermentum, containing thousands of these same nanoparticles (MNP-bacteria). Using AC magnetic susceptibility measurements of the stomach, small intestine, cecum and large intestine obtained after rat sacrifice, and iron content determination by ICP-OES, we have monitored the biodistribution and biodegradation of the maghemite nanoparticles along the gastrointestinal tract, after oral administration of both MNP and MNP-bacteria. The results revealed that the amount of magnetic nanoparticles accumulated in intestines is sensibly higher when MNP-bacteria were administered, in comparison with MNP.

View Article and Find Full Text PDF