Publications by authors named "Victor G Kramer"

Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV.

View Article and Find Full Text PDF

Background: Due to resistance to all classes of anti-HIV drugs and drug toxicity, there is a need for the discovery and development of new anti-HIV drugs.

Methods: HIV-1 inhibitors were identified and biologically characterized for mechanism of action.

Results: We identified a dibenzocyclooctadiene lignan, termed HDS2 that possessed anti-HIV activity against a wide variety of viral strains with EC50 values in the 1-3 µM range.

View Article and Find Full Text PDF

Objectives: Cenicriviroc is a potent antagonist of the chemokine coreceptors 5 and 2 (CCR5/CCR2) and blocks HIV-1 entry. The CCR5 inhibitor maraviroc has been shown in tissue culture to be able to repel cell-free virions from the cell surface into extracellular space. We hypothesized that cenicriviroc might exhibit a similar effect, and tested this using clinical samples from the Phase IIb study 652-2-202, by measuring rates of intracellular DNA decline.

View Article and Find Full Text PDF

Background: Attempts to eradicate HIV from cellular reservoirs are vital but depend on a clear understanding of how viral variants are transmitted and survive in the different cell types that constitute such reservoirs. Mutations in the env gene of HIV may be able to exert a differential influence on viral transmission ability in regard to cell-free and cell-associated viral forms.

Methods: The ability of HIV containing an env G367R mutation in cell-free and cell-associated viruses to cause infection and to revert to wild-type was measured using several T cell lines.

View Article and Find Full Text PDF

The success of vaccine regimens against viral pathogens hinges on the elicitation of protective responses. Hypervariable pathogens such as HIV avoid neutralization by masking protective epitopes with more immunogenic decoys. The identification of protective, conserved epitopes is crucial for future vaccine candidate design.

View Article and Find Full Text PDF

Background: The development of envelope-specific neutralizing antibodies that can interfere with viral entry into target cells is important for the development of an HIV-1 vaccine. Another means of blocking viral entry is through the use of entry inhibitors such as the CCR5 inhibitor maraviroc (MVC), which can also repel cell-free virus particles from the cell surface. For this reason, we hypothesized that exposure to entry inhibitors might alter viral infectiousness and sensitivity to antibody-mediated neutralization.

View Article and Find Full Text PDF

Background: Rhesus macaques (RMs) inoculated with live-attenuated Rev-Independent Nef¯ simian immunodeficiency virus (Rev-Ind Nef¯SIV) as adults or neonates controlled viremia to undetectable levels and showed no signs of immunodeficiency over 6-8 years of follow-up. We tested the capacity of this live-attenuated virus to protect RMs against pathogenic, heterologous SIVsmE660 challenges.

Methodology/principal Findings: Three groups of four RM were inoculated with Rev-Ind Nef¯SIV and compared.

View Article and Find Full Text PDF

E138K, a G→A mutation in HIV-1 reverse transcriptase (RT), is preferentially selected by etravirine (ETR) and rilpivirine over other substitutions at position E138 that offer greater drug resistance. We hypothesized that there was a mutational bias for the E138K substitution and designed an allele-specific PCR to monitor the emergence of E138A/G/K/Q/R/V during ETR selection experiments. We also performed competition experiments using mutated viruses and quantified the prevalence of E138 minority species in drug-naive patients.

View Article and Find Full Text PDF

HIV entry inhibitors, such as maraviroc (MVC), prevent cell-free viruses from entering the cells. In clinical trials, patients who were treated with MVC often displayed viral loads that were above the limit of conventional viral load detection compared to efavirenz-based regimens. We hypothesize that viruses blocked by entry inhibitors may be redistributed to plasma, where they artificially increase viral load measurements compared to those with the use of antiretroviral drugs (ARVs) that act intracellularly.

View Article and Find Full Text PDF

Background: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized.

View Article and Find Full Text PDF

Background: Worldwide, approximately 90% of all human immunodeficiency virus (HIV) transmissions occur mucosally; almost all involve R5 strains. Risks of sexual HIV acquisition are highest for rectal, then vaginal, and finally oral exposures.

Methods: Mucosal lacerations may affect the rank order of susceptibility to HIV but cannot be assessed in humans.

View Article and Find Full Text PDF

Peptide-based vaccines, one of several anti-tumor immunization strategies currently under investigation, can elicit both MHC Class I-restricted (CD8(+)) and Class II-restricted (CD4(+)) responses. However, the need to identify specific T-cell epitopes in the context of MHC alleles has hampered the application of this approach. We have tested overlapping synthetic peptides (OSP) representing a tumor antigen as a novel approach that bypasses the need for epitope mapping, since OSP contain all possible epitopes for both CD8(+) and CD4(+) T cells.

View Article and Find Full Text PDF

Human immunodeficiency virus clade C (HIV-C) accounts for >56% of all HIV infections worldwide. To investigate vaccine safety and efficacy in nonhuman primates, a pathogenic, R5-tropic, neutralization-sensitive simian-human immunodeficiency virus (SHIV) carrying HIV-C env would be desirable. We have constructed SHIV-2873Ni, an R5-tropic SHIV carrying a primary pediatric HIV-C env gene isolated from a 2-month-old Zambian infant, who died within 1 year of birth.

View Article and Find Full Text PDF

Background: Infection of nonhuman primates with simian immunodeficiency virus (SIV) or chimeric simian-human immunodeficiency virus (SHIV) strains is widely used to study lentiviral pathogenesis, antiviral immunity and the efficacy of AIDS vaccine candidates. SHIV challenges allow assessment of anti-HIV-1 envelope responses in primates. As such, SHIVs should mimic natural HIV-1 infection in humans and, to address the pandemic, encode HIV-1 Env components representing major viral subtypes worldwide.

View Article and Find Full Text PDF

The HIV-1/AIDS epidemic continues to escalate, and a protective vaccine remains elusive. The first vaccine candidate, gp120, did not induce broadly neutralizing antibodies (nAbs) against primary HIV-1 isolates and was ineffective in phase III clinical trials. Attention then focused on generating cytotoxic lymphocyte (CTL)-based vaccines.

View Article and Find Full Text PDF