J Clin Med
August 2023
Patients with type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) without myocardial infarction (MI) or stroke are at high risk for major cardiovascular events (MACEs). We aimed to provide real-world data on age-related clinical characteristics, treatment management, and incidence of major cardiovascular outcomes in T2DM-CAD patients in Spain from 2014 to 2018. We used EHRead technology, which is based on natural language processing and machine learning, to extract unstructured clinical information from electronic health records (EHRs) from 12 hospitals.
View Article and Find Full Text PDFMutations in the gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (-DCM). The main clinical risks in -DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if mutations also cause vascular alterations that might contribute to the etiopathogenesis of -DCM, we generated and characterized mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes.
View Article and Find Full Text PDFIntroduction: Patients with cancer and venous thromboembolism (VTE) show a high risk of VTE recurrence during anticoagulant treatment. This study aimed to develop a predictive model to assess the risk of VTE recurrence within 6 months at the moment of primary VTE diagnosis in these patients.
Materials And Methods: Using the EHRead® technology, based on Natural Language Processing (NLP) and machine learning (ML), the unstructured data in electronic health records from 9 Spanish hospitals between 2014 and 2018 were extracted.
J Clin Med
October 2022
Patients with Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are at high risk of developing major adverse cardiovascular events (MACE). This is a multicenter, retrospective, and observational study performed in Spain aimed to characterize these patients in a real-world setting. Unstructured data from the Electronic Health Records were extracted by EHRead, a technology based on Natural Language Processing and machine learning.
View Article and Find Full Text PDFBackground: Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life.
View Article and Find Full Text PDFAims: Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown.
View Article and Find Full Text PDFBackground And Purpose: Headache is an important manifestation during SARS-CoV-2 infection. In this study, the aim was to identify factors associated with headache in COVID-19 and headache characteristics.
Methods: This case-control study includes COVID-19 hospitalized patients with pneumonia during March 2020.
Since the COVID-19 outbreak, researchers have tried to characterise the novel coronavirus SARS-CoV-2 to better understand the pathogenic mechanisms of the virus and prevent further dissemination. As a consequence, there has been a bloom in scientific research papers focused on the behaviour of the virus in different environmental contexts. Nevertheless, despite these efforts and due to its novelty, available information about this coronavirus is limited, as several research studies are still ongoing.
View Article and Find Full Text PDFAging is the main risk factor for cardiovascular and metabolic diseases, which have become a global concern as the world population ages. These diseases and the aging process are exacerbated in Hutchinson-Gilford progeria syndrome (HGPS or progeria). Here, we evaluated the cardiometabolic disease in animal models of premature and normal aging with the aim of identifying alterations that are shared or specific to each condition.
View Article and Find Full Text PDFDifferent microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely.
View Article and Find Full Text PDFDefining the relationship between ageing and cancer is a crucial but challenging task. Mice deficient in Zmpste24, a metalloproteinase mutated in human progeria and involved in nuclear prelamin A maturation, recapitulate multiple features of ageing. However, their short lifespan and serious cell-intrinsic and cell-extrinsic alterations restrict the application and interpretation of carcinogenesis protocols.
View Article and Find Full Text PDF