Publications by authors named "Victor E Sarmiento-Ortega"

Cadmium (Cd) is among the top seven most hazardous environmental contaminants. Minimal risk levels for daily exposure have been established, such as no observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL). Chronic exposure to Cd, at both NOAEL and LOAEL doses, causes toxicity in diverse tissues.

View Article and Find Full Text PDF

Cadmium (Cd) is a global pollutant, and its accumulation in the liver causes oxidative stress, inflammation, insulin resistance (IR), and metabolic complications. This study investigated whether curcumin treatment could alleviate hepatic IR in Wistar rats exposed to sub-chronic cadmium and explored the underlying molecular pathways. Male Wistar rats were divided into a control group (standard normocaloric diet + cadmium-free water) and a cadmium group (standard normocaloric diet + drinking water with 32.

View Article and Find Full Text PDF

Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival.

View Article and Find Full Text PDF

Metabolic diseases are a worldwide health problem. Insulin resistance (IR) is their distinctive hallmark. For their study, animal models that provide reliable information are necessary, permitting the analysis of the cluster of abnormalities that conform to it, its progression, and time-dependent molecular modifications.

View Article and Find Full Text PDF

Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation.

View Article and Find Full Text PDF

Cadmium is a critical toxic agent in occupational and non-occupational settings and acute and chronic environmental exposure situations that have recently been associated with metabolic disease development. Until now, the no observed adverse effect level (NOAEL) of cadmium has not been studied regarding insulin resistance development. Therefore, we aimed to monitor whether chronic oral exposure to cadmium NOAEL dose induces insulin resistance in Wistar rats and investigate if oxidative stress and/or inflammation are related.

View Article and Find Full Text PDF

Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats.

View Article and Find Full Text PDF

Cadmium, one of the more hazardous environmental contaminants, has been proposed as a metabolic disruptor. Vanadium has emerged as a possible treatment for metabolic diseases. Both metals are important in public health.

View Article and Find Full Text PDF

Context: The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress.

Objective: In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress.

Methods: Male Wistar rats were exposed to Cd (32.

View Article and Find Full Text PDF

Previous studies have proposed that cadmium (Cd) is a metabolic disruptor, which is associated with insulin resistance, metabolic syndrome, and diabetes. This metal is not considered by international agencies for the study of metabolic diseases. In this study, we investigate the effect of metformin on Cd-exposed Wistar rats at a lowest-observed-adverse-effect level (LOAEL) dose (32.

View Article and Find Full Text PDF

Vanadium(IV/V) compounds have been studied as possible metallopharmaceutical drugs against diabetes mellitus. However, mechanisms of action and toxicological threshold have been tackled poorly so far. In this paper, our purposes were to evaluate the metabolic activity on dyslipidemia and dysglycemia, insulin signaling in liver and adipose tissue, and toxicology of the title compound.

View Article and Find Full Text PDF

Because of the increasing global spread of type 2 diabetes mellitus, there is a need to develop new antidiabetic agents. Recently we have synthesized new decavanadates using metformin as counterion. In particular, the compound containing three metforminium dications has been obtained in high yield and has been completely characterized.

View Article and Find Full Text PDF