Publications by authors named "Victor E P Claerbout"

van der Waals (vdW) homo/heterostructures are ideal systems for studying interfacial tribological properties such as structural superlubricity. Previous studies concentrated on the mechanism of translational motion in vdW interfaces. However, detailed mechanisms and general properties of the rotational motion are barely explored.

View Article and Find Full Text PDF

Two-dimensional heterostructures are excellent platforms to realize twist-angle-independent ultra-low friction due to their weak interlayer van der Waals interactions and natural lattice mismatch. However, for finite-size interfaces, the effect of domain edges on the friction process remains unclear. Here we report the superlubricity phenomenon and the edge-pinning effect at MoS/graphite and MoS/hexagonal boron nitride van der Waals heterostructure interfaces.

View Article and Find Full Text PDF

Solid lubricants have received substantial attention due to their excellent frictional properties. Among others, molybdenum disulfide (MoS) is one of the most studied lubricants. Humidity results in a deterioration of the frictional properties of MoS.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair.

View Article and Find Full Text PDF

Recent research showed that the rotational degree of freedom in stacking 2D materials yields great changes in the electronic properties. Here, we focus on an often overlooked question: are twisted geometries stable and what defines their rotational energy landscape? Our simulations show how epitaxy theory breaks down in these systems, and we explain the observed behavior in terms of an interplay between flexural phonons and the interlayer coupling, governed by the moiré superlattice. Our argument, applied to the well-studied MoS/graphene system, rationalizes experimental results and could serve as guidance to design twistronic devices.

View Article and Find Full Text PDF

The pyrimidine-pyrimidone (6-4) photoproduct (64-PP) is an important photoinduced DNA lesion constituting a mutational signature for melanoma. The structural impact of 64-PP on DNA complexed with histones affects the lesion mutagenicity and repair but remains poorly understood. Here we investigate the conformational dynamics of DNA-containing 64-PP within the nucleosome core particle by atomic-resolution molecular dynamics simulations and multiscale data analysis.

View Article and Find Full Text PDF

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields.

View Article and Find Full Text PDF