Membranes (Basel)
December 2024
The present study investigates a multicomponent lipid system that simulates the neuronal grey matter membrane, employing molecular acoustics as a precise, straightforward, and cost-effective methodology. Given the significance of omega-3 polyunsaturated fatty acids in the functionality of cellular membranes, this research examines the effects of reducing 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) content on the compressibility and elasticity of the proposed membrane under physiological conditions. Our results align with bibliographic data obtained through other techniques, showing that as the proportion of PDPC increases in the grey matter membrane model, the system's compressibility decreases, and the membrane's elasticity increases, as evidenced by the reduction in the bulk modulus.
View Article and Find Full Text PDFAvalanches of rupturing bubbles play an important role in the dynamics of collapse of macroscopic liquid foams. We hypothesized that the occurrence of cascades of rupturing bubbles in foams depends, at least in part, on the power released during the rupture of a bubble. In this paper, we present results on the dynamics of single bubble bursting obtained by analyzing the pressure wave (sound) emitted by the bubble when collapsing.
View Article and Find Full Text PDFThe interaction of polyamine poly(allylamine hydrochloride) with NaPO, NaPO, NaPO, NaPO, and (NaPO) salts and the formation of polyamine phosphate nanoparticles (PANs) are studied here. Dynamic light scattering, isothermal titration calorimetry (ITC), electrophoretical mobility measurements, atomic force microscopy, and transmission electron microscopy are used to explore the formation, stability, and pH sensitivity of PANs. An optimal concentration for PAN formation is found for each phosphate salt in terms of the most stable size and lowest polydispersity index of the nanoparticles.
View Article and Find Full Text PDFWe studied the dynamics of a cationic surfactant monolayer, Gemini 12-2-12, at the air?water interface for surfactant aqueous solutions at concentrations below the critical micelle concentration. We present surface rheology experiments performed in a Langmuir trough by the oscillatory barrier technique. From these, we found negative surface viscosities at certain frequencies.
View Article and Find Full Text PDFThe limited amount of information about reverse micelles (RMs) made with gemini surfactants, the effect of the n-alcohols in their interface, and the water-entrapped structure in the polar core motivated us to perform this work. Thus, in the present contribution, we use dynamic light scattering (DLS), static light scattering (SLS), and FT-IR techniques to obtain information on RMs structure created, with the gemini dimethylene-1,2-bis(dodecyldimethylammonium) bromide (G12-2-12) surfactant and compare the results with its monomer: dodecyltrimethylammonium bromide (DTAB). In this way, the size of the aggregates formed in different nonpolar organic solvents, the effect of the chain length of n-alcohols used as cosurfactants, and the water-entrapped structure were explored.
View Article and Find Full Text PDF