Unlabelled: Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity.
View Article and Find Full Text PDFSustaining the release of highly dosed APIs from a matrix tablet is challenging. To address this challenge, this study evaluated the performance of thermoplastic poly (2-alkyl-2-oxazoline)s (PAOx) as matrix excipient to produce sustained-release tablets via three processing routes: (a) hot-melt extrusion (HME) combined with injection molding (IM), (b) HME combined with milling and compression and (c) direct compression (DC). Different PAOx (co-)polymers and polymer mixtures were processed with several active pharmaceutical ingredients having different aqueous solubilities and melting temperatures (metoprolol tartrate (MPT), metformin hydrochloride (MTF) and theophylline anhydrous (THA)).
View Article and Find Full Text PDFKCNQ channels participate in the physiology of several cell types. In neurons of the central nervous system, the primary subunits are KCNQ2, 3, and 5. Activation of these channels silence the neurons, limiting action potential duration and preventing high-frequency action potential burst.
View Article and Find Full Text PDFThe widely expressed two-pore homodimeric inward rectifier CLC-2 chloride channel regulates transepithelial chloride transport, extracellular chloride homeostasis, and neuronal excitability. Each pore is independently gated at hyperpolarized voltages by a conserved pore glutamate. Presumably, exiting chloride ions push glutamate outwardly while external protonation stabilizes it.
View Article and Find Full Text PDFTemperature-responsive nanomaterials have gained increasing interest over the past decade due their ability to undergo conformational changes in situ, in response to a change in temperature. One class of temperature-responsive polymers are those with lower critical solution temperature, which phase separate in aqueous solution above a critical temperature. When these temperature-responsive polymers are grafted to a solid nanoparticle, a change in their surface properties occurs above this critical temperature, from hydrophilic to more hydrophobic, giving them a propensity to aggregate.
View Article and Find Full Text PDFEnzymatically degradable polymeric micelles have great potential as drug delivery systems, allowing the selective release of their active cargo at the site of disease. Furthermore, enzymatic degradation of the polymeric nanocarriers facilitates clearance of the delivery system after it has completed its task. While extensive research is dedicated toward the design and study of the enzymatically degradable hydrophobic block, there is limited understanding on how the hydrophilic shell of the micelle can affect the properties of such enzymatically degradable micelles.
View Article and Find Full Text PDFNew functional initiators for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines are described to introduce a thiol moiety at the α terminus. Both tosylate and nosylate initiators carrying a thioacetate group are obtained in multigram scale, from commercial reagents in two steps, including a phototriggered thiol-ene radical addition. The nosylate derivative gives access to a satisfying control over the cationic ring-opening polymerization of 2-ethyl-2-oxazoline, with dispersity values lower than 1.
View Article and Find Full Text PDFIon mobility-mass spectrometry (IM-MS) experiments are mostly used hand in hand with computational chemistry to correlate mobility measurements to the shape of the ions. Recently, we developed an automatable method to fit IM data obtained with synthetic homopolymers (i.e.
View Article and Find Full Text PDFWater-soluble polymers are still the most popular carrier for the preparation of amorphous solid dispersions (ASDs). The advantage of this type of carrier is the fast drug release upon dissolution of the water-soluble polymer and thus the initial high degree of supersaturation of the poorly soluble drug. Nevertheless, the risk for precipitation due to fast drug release is a phenomenon that is frequently observed.
View Article and Find Full Text PDFDespite the fact that solid dispersions are gaining momentum, the number of polymers that have been used as a carrier during the past 50 years is rather limited. Recently, the poly(2-alkyl-2-oxazoline) (PAOx) polymer class profiled itself as a versatile platform for a wide variety of applications in drug delivery, including their use as amorphous solid dispersion (ASD) carrier. The aim of this study was to investigate the potential of poly(2-ethyl-2-oxazoline) (PEtOx) by applying a benchmark approach with well-known, commercially available carriers (i.
View Article and Find Full Text PDFGPN-loop GTPases 1 and 3 are required for RNA polymerase II (RNAPII) nuclear import. Gpn1 and Gpn3 display some sequence similarity, physically associate, and their protein expression levels are mutually dependent in human cells. We performed here Fluorescence Resonance Energy Transfer (FRET), molecular modeling, and cell biology experiments to understand, and eventually disrupt, human Gpn1-Gpn3 interaction in live HEK293-AD cells.
View Article and Find Full Text PDFWhen polymer mixtures become increasingly complex, the conventional analysis techniques become insufficient for complete characterization. Mass spectrometric techniques can satisfy this increasing demand for detailed sample characterization. Even though isobaric polymers are indistinguishable using simple mass spectrometry (MS) analyses, more advanced techniques such as tandem MS (MS/MS) or ion mobility (IM) can be used.
View Article and Find Full Text PDFCalmodulin (CaM) conveys intracellular Ca signals to KCNQ (Kv7, "M-type") K channels and many other ion channels. Whether this "calmodulation" involves a dramatic structural rearrangement or only slight perturbations of the CaM/KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low nanomolar and physiologically high intracellular [Ca] is still under debate.
View Article and Find Full Text PDFBuckminsterfullerene (C) has a large potential for biomedical applications. However, the main challenge for the realization of its biomedical application potential is to overcome its extremely low water solubility. One approach is the coformulation with biocompatible water-soluble polymers, such as poly(2-oxazoline)s (PAOx), to form water-soluble C nanoparticles (NPs).
View Article and Find Full Text PDFPolymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) techniques, ion mobility-mass spectrometry (IM-MS) has been recently added to the inventory of characterization technique. However, only few studies have focused on the reproducibility and robustness of polymer IM-MS analyses.
View Article and Find Full Text PDFPhosphatidylinositol 4,5-bisphosphate (PIP) in the plasma membrane regulates the function of many ion channels, including M-type (potassium voltage-gated channel subfamily Q member (KCNQ), K7) K channels; however, the molecular mechanisms involved remain unclear. To this end, we here focused on the KCNQ3 subtype that has the highest apparent affinity for PIP and performed extensive mutagenesis in regions suggested to be involved in PIP interactions among the KCNQ family. Using perforated patch-clamp recordings of heterologously transfected tissue culture cells, total internal reflection fluorescence microscopy, and the zebrafish () voltage-sensitive phosphatase to deplete PIP as a probe, we found that PIP regulates KCNQ3 channels through four different domains: 1) the A-B helix linker that we previously identified as important for both KCNQ2 and KCNQ3, 2) the junction between S6 and the A helix, 3) the S2-S3 linker, and 4) the S4-S5 linker.
View Article and Find Full Text PDFThe Hv1 proton channel shares striking structural homology with fourth transmembrane helical segment-type voltage-sensor (VS) domains but manifests distinctive functional properties, including a proton-selective "aqueous" conductance and allosteric control of voltage-dependent gating by changes in the transmembrane pH gradient. The mechanisms responsible for Hv1's functional properties remain poorly understood, in part because methods for measuring gating currents that directly report VS activation have not yet been described. Here, we describe an approach that allows robust and reproducible measurement of gating-associated charge movements in Hv1.
View Article and Find Full Text PDFThe voltage sensor (VS) domain in Hv1 proton channels mediates a voltage-dependent and H-selective "aqueous" conductance (G) that is potently modulated by extracellular Zn Although two conserved His residues are required for Zn effects on G gating, the atomic structure of the Zn coordination site and mechanism by which extracellular Zn stabilizes a closed-state conformation remain unknown. Here we use His mutagenesis to identify residues that increase Zn potency and are therefore likely to participate in first solvation shell interactions with Zn Experimental Zn-mapping data were then used to constrain the structure of a new resting-state Hv1 model (Hv1 F). Molecular dynamics (MD) simulations show how protein and water atoms directly contribute to octahedral Zn coordination spheres in Zn-bound and -unbound Hv1 F models.
View Article and Find Full Text PDFBuckminster fullerene (C )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins.
View Article and Find Full Text PDFMost polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT , swelling occurred as a result of host-guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network.
View Article and Find Full Text PDFFunctionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering.
View Article and Find Full Text PDFProton channels have evolved to provide a pH regulatory mechanism, affording the extrusion of protons from the cytoplasm at all membrane potentials. Previous evidence has suggested that channel-mediated acid extrusion could significantly change the local concentration of protons in the vicinity of the channel. In this work, we directly measure the proton depletion caused by activation of Hv1 proton channels using patch-clamp fluorometry recordings from channels labeled with the Venus fluorescent protein at intracellular domains.
View Article and Find Full Text PDFThere is an increasing need for smart materials capable of removing multivalent ions from aqueous streams without the inconvenience of brine regeneration as in ion-exchange processes. Herein, we present a thermoresponsive micellar system consisting of polystyrene-poly(methoxy diethyleneglycol acrylate) block copolymer surfactants modified with carboxylic acid end groups (PS-PMDEGA-COOH) that can be used to switch between the adsorption and desorption of divalent calcium(II) cations by a mild temperature trigger, thus providing a new type of thermoregenerable ion-adsorbing materials. The switch of calcium(II)-binding capacity is demonstrated to result from a shift in the pKa value of the carboxylic acid groups by the collapse and redissolution of the PMDEGA block and the associated change in local polarity.
View Article and Find Full Text PDF