Publications by authors named "Victor De Lorenzo"

Evolutionary processes acting on populations of organized molecules preceded the origin of living organisms. These prebiotic entities were independently and repeatedly produced [i.e.

View Article and Find Full Text PDF

This report highlights a science outreach effort for prisons launched by the Spanish National Research Council (CSIC) in collaboration with the NGO Solidarios para el Desarrollo. The Microbiology-focused part of the initiative aims at educating inmates on some basic facts, in order to raise awareness about microorganisms and their impact on daily life. The outline of the talks, inspired by the International Initiative for Microbial Literacy, aims to encourage this collective to move from passive listeners into active participants, helping them understand that Earth is a microbial planet, and that their bodies harbour vast microbiomes that affect their health and social interactions.

View Article and Find Full Text PDF

The canonical arsRBC genes of the ars1 operon in Pseudomonas putida KT2440, which confer tolerance to arsenate and arsenite, are followed by a series of additional ORFs culminating in phoN1. The phoN1 gene encodes an acetyltransferase that imparts resistance to the glutamine synthetase inhibitor herbicide phosphinothricin (PPT). The co-expression of phoN1 and ars genes in response to environmental arsenic, along with the physiological effects, was analysed through transcriptomics of cells exposed to the oxyanion and phenotypic characterization of P.

View Article and Find Full Text PDF

Base editors, e.g., cytosine deaminases, are powerful tools for precise DNA editing , enabling both targeted nucleotide conversions and segment-specific diversification of bacterial genomes.

View Article and Find Full Text PDF

Triosephosphate isomerase (TpiA) is widely regarded as an example of an optimally evolved enzyme due to its essential role in biological systems, its structural conservation, and its near-perfect kinetic parameters. In this study, we investigated the structural robustness of the archetypal TpiA variant from Escherichia coli using an in vitro 5-amino acid linker scanning method. The resulting library was introduced into a tpiA mutant strain for functional complementation.

View Article and Find Full Text PDF

At near 50 years of the discovery of microcins, this article highlights the pivotal-but under-recognised-influence of Spanish biochemist Carlos Asensio (1925-1982) in contemporary microbiology, featuring the epistemological, sociological, and cultural impact of his scientific achievements. At a time when the intestinal microbiome is central to current biomedical research, it is due to emphasise his role in the establishment of new scientific fields that are now considered fundamental. Despite his premature death at the peak of his conceptual and experimental creativity, many of his ideas about microbial communication in complex communities inspired a generation of researchers and opened new topics reach to this day.

View Article and Find Full Text PDF

Although members of the genus share specific morphological, metabolic, and genomic traits, the diversity of niches and lifestyles adopted by the family members is vast. One species of the group, thrives as a colonizer of plant roots and frequently inhabits soils polluted with various types of chemical waste. Owing to a combination of historical contingencies and inherent qualities, a particular strain, KT2440, emerged time ago as an archetype of an environmental microorganism amenable to recombinant DNA technologies, which was also capable of catabolizing chemical pollutants.

View Article and Find Full Text PDF

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists in Molecular Biology have been trying to figure out how things work in life to create useful tools and applications.
  • With new technologies like machine learning and artificial intelligence, we can now jump straight to using ideas without fully understanding the details.
  • This raises the question of whether we will start caring less about studying how things work in the first place.
View Article and Find Full Text PDF

On 9-13 July 2023, the 10th FEMS Congress took place in Hamburg, Germany. As part of this major event in European microbiology, the European Academy of Microbiology (EAM) organized two full sessions. One of these sessions aimed to highlight the research of four recently elected EAM fellows and saw presentations on bacterial group behaviours and development of resistance to antibiotics, as well as on new RNA viruses including bacteriophages and giant viruses of amoebae.

View Article and Find Full Text PDF

The soil bacterium Pseudomonas putida, especially the KT2440 strain, is increasingly being utilized as a host for biotransformations of both industrial and environmental interest. The foundations of such performance include its robust redox metabolism, ability to tolerate a wide range of physicochemical stresses, rapid growth, versatile metabolism, nonpathogenic nature, and the availability of molecular tools for advanced genetic programming. These attributes have been leveraged for hosting engineered pathways for production of valuable chemicals or degradation/valorization of environmental pollutants.

View Article and Find Full Text PDF

Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media.

View Article and Find Full Text PDF

Synthetic biology (SynBio) has attracted like no other recent development the attention not only of Life Science researchers and engineers but also of intellectuals, technology think-tanks, and private and public investors. This is largely due to its promise to propel biotechnology beyond its traditional realms in medicine, agriculture, and environment toward new territories historically dominated by the chemical and manufacturing industries─but now claimed to be amenable to complete . For this to happen, it is crucial for the field to remain true to its foundational engineering drive, which relies on mathematics and quantitative tools to construct practical solutions to real-world problems.

View Article and Find Full Text PDF

Colony formation is key to many ecological and biotechnological processes. In its early stages, colony formation involves the concourse of a number of physical and biological parameters for generation of a distinct 3D structure-the specific influence of which remains unclear. We focused on a thus far neglected aspect of the process, specifically the consequences of the differential pressure experienced by cells in the middle of a colony versus that endured by bacteria located in the growing periphery.

View Article and Find Full Text PDF

The inner physicochemical heterogeneity of bacterial cells generates three-dimensional (3D)-dependent variations of resources for effective expression of given chromosomally located genes. This fact has been exploited for adjusting the most favorable parameters for implanting a complex device for optogenetic control of biofilm formation in the soil bacterium . To this end, a DNA segment encoding a superactive variant of the diguanylate cyclase PleD expressed under the control of the cyanobacterial light-responsive CcaSR system was placed in a mini-Tn5 transposon vector and randomly inserted through the chromosome of wild-type and biofilm-deficient variants of lacking the gene cluster.

View Article and Find Full Text PDF

The biodegradative capacity of bacteria in their natural habitats is affected by water availability. In this work, we have examined the activity and effector specificity of the transcriptional regulator XylR of the TOL plasmid pWW0 of Pseudomonas putida mt-2 for biodegradation of m-xylene when external water potential was manipulated with polyethylene glycol PEG8000. By using non-disruptive luxCDEAB reporter technology, we noticed that the promoter activated by XylR (Pu) restricted its activity and the regulator became more effector-specific towards head TOL substrates when cells were grown under water subsaturation.

View Article and Find Full Text PDF

The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications.

View Article and Find Full Text PDF

Targetron technology, a gene-editing approach based on the use of mobile group II introns, is particularly useful for bacterial strains deficient in homologous recombination. Specifically, the Ll.LtrB intron from Lactococcus lactis can be used in a wide range of species and can be easily retargeted, that is, modified for integration into any locus of interest.

View Article and Find Full Text PDF

The promiscuous conjugation machinery of the Gram-negative plasmid RP4 has been reassembled in a minimized, highly transmissible vector for propagating genetically encoded traits through diverse types of naturally occurring microbial communities. To this end, the whole of the RP4-encoded transfer determinants (, genes, and origin of transfer ) was excised from their natural context, minimized, and recreated in the form of a streamlined DNA segment borne by an autoselective replicon. The resulting constructs (the pMATING series) could be self-transferred through a variety of prokaryotic and eukaryotic recipients employing such a rationally designed conjugal delivery device.

View Article and Find Full Text PDF

Contemporary synthetic biology-based biotechnologies are generating tools and strategies for reprogramming genomes for specific purposes, including improvement and/or creation of microbial processes for tackling climate change. While such activities typically work well at a laboratory or bioreactor scale, the challenge of their extensive delivery to multiple spatio-temporal dimensions has hardly been tackled thus far. This state of affairs creates a research niche for what could be called (EG), i.

View Article and Find Full Text PDF

The ability of T7 RNA polymerase (RNAP ) fusions to cytosine deaminases (CdA) for entering C➔T changes in any DNA segment downstream of a T7 promoter was exploited for hyperdiversification of defined genomic portions of Pseudomonas putida KT2440. To this end, test strains were constructed in which the chromosomally encoded pyrF gene (the prokaryotic homologue of yeast URA3) was flanked by T7 transcription initiation and termination signals and also carried plasmids expressing constitutively either high-activity (lamprey's) or low-activity (rat's) CdA-RNAP fusions. The DNA segment-specific mutagenic action of these fusions was then tested in strains lacking or not uracil-DNA glycosylase (UDG), that is ∆ung/ung variants.

View Article and Find Full Text PDF

DNA-protein interactions are central to fundamental cellular processes, yet widely implemented technologies for measuring these interactions on a genome scale in bacteria are laborious and capture only a snapshot of binding events. We devised a facile method for mapping DNA-protein interaction sites in vivo using the double-stranded DNA-specific cytosine deaminase toxin DddA. In 3D-seq (DddA-sequencing), strains containing DddA fused to a DNA-binding protein of interest accumulate characteristic mutations in DNA sequence adjacent to sites occupied by the DNA-bound fusion protein.

View Article and Find Full Text PDF

The ability to engineer bacterial genomes in an efficient way is crucial for many bio-related technologies. Single-stranded (ss) DNA recombineering technology allows to introduce mutations within bacterial genomes in a very simple and straightforward way. This technology was initially developed for E.

View Article and Find Full Text PDF