This work proposes a numerical procedure to simulate and optimize the thermal response of a multilayered wallboard system for building envelopes, where each layer can be possibly made of Phase Change Materials (PCM)-based composites to take advantage of their Thermal-Energy Storage (TES) capacity. The simulation step consists in solving the transient heat conduction equation across the whole wallboard using the enthalpy-based finite element method. The weather is described in detail by the Typical Meteorological Year (TMY) of the building location.
View Article and Find Full Text PDFWe introduce the optimization-based method for the design of thermo-mechanical metamaterials and, particularly, for the elastostatic cloaking under thermal loads. It consists of solving a large-scale, nonlinear constrained optimization problem, where the objective function is the error in the cloaking task accomplishment. The design variables define the required metamaterial distribution.
View Article and Find Full Text PDFWe present a new method for the design of devices to manipulate the displacement field in Elastic materials. It consists of solving a nonlinear optimization problem where the objective function defines the error in matching a desired displacement field, and the design variables determine the required material distribution within the device. In order to facilitate fabrication, the material at a given point of the device is chosen from a set of predefined materials, giving raise to a discrete optimization problem that is converted into a continuous one using the Discrete Material Optimization technique.
View Article and Find Full Text PDFIn this work, we present a new method for the design of heat flux manipulating devices, with emphasis on their fabricability. The design is obtained as solution of a nonlinear optimization problem where the objective function represents the given heat flux manipulation task, and the design variables define the material distribution in the device. In order to facilitate the fabrication of the device, the material at a given point is chosen from a set of predefined metamaterials.
View Article and Find Full Text PDFTo gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied.
View Article and Find Full Text PDF