In the present study, various surfactants were combined with insulin (INS), bovine serum albumin (BSA) and horseradish peroxidase (HRP) via hydrophobic ion pairing to increase lipophilicity and facilitate incorporation into self-emulsifying drug delivery systems (SEDDS). Lipophilicity of model proteins was successfully increased, achieving log D values up to 3.5 (INS), 3.
View Article and Find Full Text PDFIn spite of recent progress made in the field of peptide and protein delivery, oral administration of insulin and similar drugs remains a challenge. In this study, lipophilicity of insulin glargine (IG) was successfully increased via hydrophobic ion pairing (HIP) with sodium octadecyl sulfate to enable incorporation into self-emulsifying drug delivery systems (SEDDS). Two SEDDS formulations (F1: 20% Labrasol®ALF, 30% polysorbate 80, 10% Croduret 50, 20% oleyl alcohol, 20% Maisine® CC; F2: 30% Labrasol®ALF, 20% polysorbate 80, 30% Kolliphor® HS 15, 20% Plurol® oleique CC 497) were developed and loaded with the IG-HIP complex.
View Article and Find Full Text PDFThe present work aimed to form hydrophobic ion pairs (HIPs) of a small molecule remaining inside the oily droplets of SEDDS to a high extent. HIPs of ethacridine and various surfactants classified by functional groups of phosphates, sulfates, and sulfonates were formed and precipitation efficiency, log D, and solubility in different excipients were investigated. Most lipophilic HIPs were incorporated into SEDDS and evaluated regarding drug release.
View Article and Find Full Text PDFAdv Colloid Interface Sci
March 2023
As nanocarriers (NCs) can improve the solubility of drugs, prevent their degradation by gastrointestinal (GI) enzymes and promote their transport across the mucus gel layer and absorption membrane, the oral bioavailability of these drugs can be substantially enhanced. All these properties of NCs including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, polymeric nanoparticles, inorganic nanoparticles and polymeric micelles depend mainly on their surface chemistry. In particular, interaction with food, digestive enzymes, bile salts and electrolytes, diffusion behaviour across the mucus gel layer and fate on the absorption membrane are determined by their surface.
View Article and Find Full Text PDFHydrophobic ion pairing and subsequent incorporation into self-emulsifying drug delivery systems (SEDDS) is a promising strategy to orally deliver hydrophilic macromolecular drugs. Within this study, hydrophobic ion pairs (HIP) between salmon calcitonin (sCT) and highly lipophilic sulfosuccinate counterions were formed and compared to frequently applied commercially available counterions. Bis(isotridecyl) sulfosuccinate resulted in HIPs of the highest lipophilicity and in significantly higher solubility in lipophilic co-solvents.
View Article and Find Full Text PDFSurfactants bearing monophosphate esters with PEG of increasing chain length and different lipophilic tail structures were investigated to improve the effectiveness of enzyme triggered charge-converting nanoemulsions. The surfactants PEG-8-stearate, PEG-22-tocopheryl succinate (TPGS), PEG-3-oleate, PEG-9-oleate and PEG-9-lauryl ether were phosphorylated and incorporated in a self-emulsifying drug delivery system (SEDDS) exhibiting a defined PEG corona. To provide a positive zeta potential increasing amounts of the cationic surfactant benzalkonium chloride (BA) were incorporated.
View Article and Find Full Text PDF