Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC.
View Article and Find Full Text PDFUnlabelled: Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here, we present a preclinical system that recapitulates acquired cross-resistance, developed from 51 patient-derived xenograft (PDX) models.
View Article and Find Full Text PDFUnlabelled: Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here we present a pre-clinical system that recapitulates acquired cross-resistance in SCLC, developed from 51 patient-derived xenografts (PDXs).
View Article and Find Full Text PDFBackground: Endovascular repair of traumatic thoracic aortic injuries (TTAI) is an alternative to conventional open surgical repair. Single-institution studies have shown a survival benefit with thoracic endovascular aortic repair (TEVAR), but whether this is being realized nationally is not clear. The purpose of our study was to document trends in the increase in use of TEVAR and its effect on outcomes of TTAI nationally.
View Article and Find Full Text PDFThe anti-inflammatory and immune regulatory functions of the ubiquitin-editing and NF-kappaB inhibitory protein A20 are well documented in vitro, and in multiple animal models. The high rank held by A20 in the cell's physiologic anti-inflammatory defense mechanisms is highlighted by the striking phenotype of A20 knockout mice, characterized by cachexia, multi-organ failure, and premature death. Even partial depletion of A20, as in A20 heterozygous mice, significantly alters NF-kappaB activation in response to pro-inflammatory activators, even though these mice are phenotypically unremarkable at baseline.
View Article and Find Full Text PDF