Pharmaceuticals are emerging contaminants of global concern due to potential ecotoxicity and persistence in wastewater. Since conventional wastewater treatment plants are not designed to remove micropollutants and the removal efficiency varies compound-specifically, pharmaceuticals pose a risk in the recipient aquatic environments. Adsorption by solid materials such as activated biochar has been suggested to offer a practical removal method.
View Article and Find Full Text PDFConcerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed.
View Article and Find Full Text PDFWaste cooking oil is a major pollutant that contaminates terrestrial and aquatic bodies which is generated from household kitchens and eateries. The bioremediation of waste cooking oil (WCO) into microbial oil, also known as single microbial cell oil (SMCO), can be accomplished by oleaginous microbes. Conventional methods excel in SMCO analysis but lack efficacy for or lysis-free monitoring of nascent SMCO synthesis and turnover.
View Article and Find Full Text PDFAbout 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments.
View Article and Find Full Text PDFArch Environ Contam Toxicol
February 2022
High emission of tire rubber particles to the surrounding environment is an inevitable consequence of the current habits of transportation. Although most of the emissions stay within a close range of the sources, it has been proven that the smallest particles can be transported to remote locations through the atmosphere, including inland water bodies. It has been estimated that a relevant portion of the global emissions of tire rubber particles reach surface waters, but effects on aquatic life in the receiving water bodies are not completely understood.
View Article and Find Full Text PDFInsects vary in the degree of their adaptability to environmental contamination. Determining the responses with phenotypic plasticity in ecologically important species in polluted environments will ease further conservation and control actions. Here, we investigated morphological characteristics such as body size, body mass, and color of the common wasp in an industrially polluted environment, considering different levels of metal pollution, and we studied the localization of contaminants in the guts of wasps.
View Article and Find Full Text PDFThe extent until which plastics are present in our surrounding environment completely exceeds our expectations. Plastic materials in the form of microplastics have been found in terrestrial, freshwater and marine environments and are transported through the atmosphere even to remote locations. However, we are still far from understanding the effects that they may have caused and are causing to biota.
View Article and Find Full Text PDFUsing the freshwater annelid Lumbriculus variegatus (Oligochaeta), the presence of cytochrome P450 (CYP) isozymes was investigated by analyzing metabolites of the polycyclic aromatic hydrocarbon (PAH) pyrene in treatments with and without the CYP inhibitor piperonyl butoxide (PBO). The results show a low biotransformation capability of L. variegatus (7% of total pyrene body burden as metabolites at 168 h).
View Article and Find Full Text PDFGenetic structure of the European Gremmeniella abietina var. abietina was analyzed in this study. Ninety-two Spanish isolates, six Swiss isolates of Alpine biotype, 76 Finnish isolates of biotype A and 54 Finnish and seven Russian isolates of biotype B were collected.
View Article and Find Full Text PDF