Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (N) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of N in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox).
View Article and Find Full Text PDFAnaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the N isotope-tracing technique and molecular analyses.
View Article and Find Full Text PDFMarine heatwaves (MHWs) can have detrimental effects on seagrasses, but knowledge about the impacts on their ecosystem services remains scarce. This work evaluated Phyllospadix scouleri (surgrass) as a biofilter for wastewater discharges, and how warming associated with MHW may affect this ecological function. The nitrogen uptake kinetics and assimilation abilities for ammonium, nitrate, and urea were examined under two different warming scenarios (single and repeated events) simulated in a mesocosm.
View Article and Find Full Text PDFVentilation in the deep Gulf of Mexico (GoM), its connection to the North Atlantic, and its susceptibility to changes of the Atlantic Meridional Overturning Circulation are investigated by combining observations of radiocarbon and volume transport with a Coupled Model Intercomparison Project phase 6 (CMIP6) General Circulation Model (GCM) ensemble output. Radiocarbon data and multiannual volume transport through the Yucatan Channel suggest deep water residence times ~100 years for the GoM. Comparisons to previous radiocarbon observations suggest that the deep GoM has aged in the recent past, consistent with observed raising temperatures and the CMIP6 GCM simulations.
View Article and Find Full Text PDFWe investigated the physical dynamics of San Quintin Bay, a coastal lagoon located on the Pacific coast of northern Baja California, Mexico. We implemented, validated and used a finite element 2-D hydrodynamic model to characterize the spatial and temporal variability of the hydrodynamic of the bay in response to variability in the tidal regime and in meteorological forcing patterns. Our analysis of general circulation, residual currents, residence times, and tidal propagation delays allowed us to characterize spatial variability in the hydrodynamic basin features.
View Article and Find Full Text PDFChlorinated hydrocarbons (CHs) were determined in blubber samples of 18 California sea lions (Zalophus californianus californianus) that stranded dead along Todos Santos Bay, Ensenada, Baja California, México, January 2000-November 2001. Summation operatorDDTs were the dominant group (geometric mean 3.8 microg/g lipid weight), followed by polychlorinated biphenyls ( summation operatorPCBs, 2.
View Article and Find Full Text PDF