The data from two Bulgarian-German instruments with the basic name "Radiation Risk Radiometer-Dosimeter" (R3D) are discussed. The R3DR instrument worked inside the ESA EXPOSE-R facility (2009-2010), while R3DR2 worked inside the ESA EXPOSE-R2 facility (2014-2016). Both were outside the Russian Zvezda module on the International Space Station (ISS).
View Article and Find Full Text PDFThe Radiation monitoring system (RMS) continuously operated in various configurations since the launch of the Zvezda module of the International Space Station (ISS). The RMS consisted of 7 units, namely: the R-16 dosimeter, 4 DB-8 dosimeters, utility and data collection units. The obtained data covers a time of 22 years.
View Article and Find Full Text PDFThe knowledge of the space radiation environment in spacecraft transition and in Mars vicinity is of importance for the preparation of the human exploration of Mars. ExoMars Trace Gas Orbiter (TGO) was launched on March 14, 2016 and was inserted into circular Mars science orbit (MSO) with a 400 km altitude in March 2018. The Liulin-MO dosimeter is a module of the Fine Resolution Epithermal Neutron Detector (FREND) aboard ExoMars TGO and has been measuring the radiation environment during the TGO interplanetary travel to Mars and continues to do so in the TGO MSO.
View Article and Find Full Text PDFThe dosimeter Liulin-MO for measuring the radiation environment onboard the ExoMars Trace Gas Orbiter (TGO) is a module of the Fine Resolution Epithermal Neutron Detector (FREND). Here we present results from measurements of the charged particle fluxes, dose rates and estimation of dose equivalent rates at ExoMars TGO Mars science orbit, provided by Liulin-MO from May 2018 to June 2022. The period of measurements covers the declining and minimum phases of the solar activity in 24th solar cycle and the rising phase of the 25th cycle.
View Article and Find Full Text PDFThe paper presents the solar modulation of the long-term galactic cosmic rays (GCR) flux and dose rates variations, observed during 14 space experiments by 10 Bulgarian build Liulin-type spectrometers (LTS) (Dachev et al., 2015a). They worked in near Earth space and in the interplanetary radiation environment between January 1991 and January 2019.
View Article and Find Full Text PDFIn this work we describe the instrument Sileye-3/Alteino, placed on board the International Space Station in April 2002. The instrument is constituted by an Electroencephalograph and a cosmic ray silicon detector. The scientific aims include the investigation of the Light Flash phenomenon, the measurement of the radiation environment and the nuclear abundance inside the ISS and the study of astronaut brain activity in space when subject to cosmic rays.
View Article and Find Full Text PDF