Introduction: While Yap and Wwtr1 regulate resident cardiac fibroblast to myofibroblast differentiation following cardiac injury, their role specifically in activated myofibroblasts remains unexplored.
Methods: We assessed the pathophysiological and cellular consequence of genetic depletion of Yap alone ( ; ) or Yap and Wwtr1 ( ; ; ) in adult mouse myofibroblasts following myocardial infarction and identify and validate novel downstream factors specifically in cardiac myofibroblasts that mediate pathological remodeling.
Results: Following myocardial infarction, depletion of Yap in myofibroblasts had minimal effect on heart function while depletion of Yap/Wwtr1 resulted in smaller scars, reduced interstitial fibrosis, and improved ejection fraction and fractional shortening.
Neonatal heart regeneration depends on proliferation of pre-existing cardiomyocytes, yet the mechanisms driving regeneration and cardiomyocyte proliferation are not comprehensively understood. We recently reported that the anti-inflammatory cytokine, interleukin 13 (IL13), promotes neonatal cardiac regeneration; however, the signaling pathway and cell types mediating this regenerative response remain unknown. Here, we hypothesized that expression of the type II heterodimer receptor for IL13, comprised of IL4Rα and IL13Rα1, expressed directly on cardiomyocytes mediates cardiomyocyte cell cycle and heart regeneration in neonatal mice.
View Article and Find Full Text PDF