Publications by authors named "Victor A Streltsov"

An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer's patients' brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent.

View Article and Find Full Text PDF

X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis.

View Article and Find Full Text PDF

The two hallmarks of Alzheimer's disease (AD) are amyloid-β (Aβ) plaques and neurofibrillary tangles marked by phosphorylated tau. Increasing evidence suggests that aggregating Aβ drives tau accumulation, a process that involves synaptic degeneration leading to cognitive impairment. Conversely, there is a realization that non-fibrillar (oligomeric) forms of Aβ mediate toxicity in AD.

View Article and Find Full Text PDF

In the barley β-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures β-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric β-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-β-D-glucosidase.

View Article and Find Full Text PDF

Protein citrullination (deimination of arginine residue) is a well-known biomarker of inflammation. Elevated protein citrullination has been shown to colocalize with extracellular amyloid plaques in AD patient brains. Amyloid-β (Aβ) peptides which aggregate and accumulate in the plaques of Alzheimer's disease (AD) have sequential N-terminal truncations and multiple post-translational modifications (PTM) such as isomerization, pyroglutamate formation, phosphorylation, nitration, and dityrosine cross-linking.

View Article and Find Full Text PDF

The design and performance of an electrochemical cell and solution flow system optimized for the collection of X-ray absorption spectra from solutions of species sensitive to photodamage is described. A combination of 3D CAD and 3D printing techniques facilitates highly optimized design with low unit cost and short production time. Precise control of the solution flow is critical to both minimizing the volume of solution needed and minimizing the photodamage that occurs during data acquisition.

View Article and Find Full Text PDF

With the introduction of the influenza specific neuraminidase inhibitors (NAIs) in 1999, there were concerns about the emergence and spread of resistant viruses in the community setting. Surveillance and testing of community isolates for their susceptibility to the NAIs was initially carried out by the Neuraminidase Inhibitor Susceptibility Network (NISN) and has subsequently been taken on by the global WHO influenza network laboratories. During the NISN surveillance, we identified two Yamagata lineage influenza B viruses with amino acid substitutions of H134Y (B/Auckland/2/2001) or W438R (B/Yokohama/12/2005) which had slightly elevated IC values for zanamivir and/or oseltamivir, but not sufficiently to be characterized as mild outliers at the time.

View Article and Find Full Text PDF

An influenza A(H1N1)pdm09 and an influenza B virus were passaged in 3-fluoro(eq)-4-guanidino difluoro sialic acid (3Feq4Gu DFSA), an inhibitor of the influenza neuraminidase (NA) to determine whether resistant variants could be selected. 3Feq4Gu DFSA is a mechanism-based inhibitor, forming a covalent link to Y406 in the NA active site. Given its similarity to the natural substrate, sialic acid, we predicted resistant variants would be difficult to select.

View Article and Find Full Text PDF

Substrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl β-D-glucoside and methyl 6-thio-β-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-β-sophoroside attaches nearby.

View Article and Find Full Text PDF

The influenza neuraminidase (NA) is a homotetramer with head, stalk, transmembrane and cytoplasmic regions. The structure of the NA head with a stalk has never been determined. The NA head from an N9 subtype influenza A virus, A/tern/Australia/G70C/1975 (H1N9), was expressed with an artificial stalk derived from the tetrabrachion (TB) tetramerization domain from Staphylothermus marinus.

View Article and Find Full Text PDF

X-ray absorption spectroscopy of Cu amyloid-β peptide (Aβ) under in situ electrochemical control (XAS-EC) has allowed elucidation of the redox properties of Cu bound to truncated peptide forms. The Cu binding environment is significantly different for the Aβ and the N-truncated Aβ, Aβ, and Aβ (Aβ) peptides, where the N-truncated sequence (FRH) provides the high-affinity amino-terminal copper nickel (ATCUN) binding motif. Low temperature (ca.

View Article and Find Full Text PDF

Competitive inhibitors of the influenza neuraminidase (NA) were discovered almost 20 years ago, with zanamivir and oseltamivir licensed globally. These compounds are based on a transition state analogue of the sialic acid substrate. We recently showed that 5- N-(acetylamino)-2,3,5-trideoxy-2,3-difluoro-d-erythro-β-l-manno-2-nonulopyranosonic acid (DFSA) and its derivatives are also potent inhibitors of the influenza NA.

View Article and Find Full Text PDF

The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'.

View Article and Find Full Text PDF

VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.

View Article and Find Full Text PDF

Serial femtosecond X-ray crystallography (SFX) has created new opportunities in the field of structural analysis of protein nanocrystals. The intensity and timescale characteristics of the X-ray free-electron laser sources used in SFX experiments necessitate the analysis of a large collection of individual crystals of variable shape and quality to ultimately solve a single, average crystal structure. Ensembles of crystals are commonly encountered in powder diffraction, but serial crystallography is different because each crystal is measured individually and can be oriented via indexing and merged into a three-dimensional data set, as is done for conventional crystallography data.

View Article and Find Full Text PDF

The human parainfluenza virus type 3 (hPIV3) hemagglutinin-neuraminidase (HN) has opposing functions of binding sialic acid receptors and cleaving them, facilitating virus release. The crystal structure of hPIV3 HN complexed with the substrate analogue difluorosialic acid (DFSA) revealed that catalysis by HN involves the formation of a covalently linked sialosyl-enzyme intermediate which was trapped along with a transition-state analogue resembling an oxocarbenium ion. This mechanism of enzyme catalysis was also confirmed in the crystal structure of the influenza N9 neuraminidase complexed with DFSA.

View Article and Find Full Text PDF

The quinoline methanol antimalarial drug mefloquine is a structural analogue of the Cinchona alkaloids, quinine and quinidine. We have elucidated the single crystal X-ray diffraction structure of the complexes formed between racemic erythro mefloquine and ferriprotoporphyrin IX (Fe(iii)PPIX) and show that alkoxide coordination is a key interaction in the solid-state. Mass spectrometry confirms the existence of coordination complexes of quinine, quinidine and mefloquine to Fe(iii)PPIX in acetonitrile.

View Article and Find Full Text PDF

Self association of the amyloid-β (Aβ42) peptide into oligomers, high molecular weight forms, fibrils and ultimately neuritic plaques, has been correlated with progressive cognitive decline in Alzheimer's disease. Thus, insights into the drivers of the aggregation pathway have the capacity to significantly contribute to our understanding of disease mechanism. Functional assays and a three-dimensional crystal structure of the P3 amyloidogenic region 18-41 of Aβ were used to identify residues important in self-association and to design novel non-aggregating variants of the peptide.

View Article and Find Full Text PDF

The heterodimeric ligand-binding region of the Bovicola ovis ecdysone receptor has been crystallized either in the presence of an ecdysteroid or a synthetic methylene lactam insecticide. Two X-ray crystallographic structures, determined at 2.7 Å resolution, show that the ligand-binding domains of both subunits of this receptor, like those of other nuclear receptors, can display significant conformational flexibility.

View Article and Find Full Text PDF

Extended X-ray absorption fine structure spectroscopy, mass spectrometry, dynamic light scattering and density functional theory are combined to derive structural models for the interaction of neurotoxicity-ablating platinum-based compounds with the amyloid-β peptide.

View Article and Find Full Text PDF

A major characteristic of Alzheimer's disease is the presence of amyloid beta (Aβ) oligomers and aggregates in the brain. Aβ oligomers interact with the neuronal membrane inducing perforations, causing an influx of calcium ions and increasing the release of synaptic vesicles that leads to a delayed synaptic failure by vesicle depletion. Here, we identified a neuroprotective pentapeptide anti-Aβ compound having the sequence of the glycine zipper region of the C-terminal of Aβ (G33LMVG37).

View Article and Find Full Text PDF

Alzheimer's disease is the leading cause of dementia in the elderly. Pathologically it is characterized by the presence of amyloid plaques and neuronal loss within the brain tissue of affected individuals. It is now widely hypothesised that fibrillar structures represent an inert structure.

View Article and Find Full Text PDF

Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid-β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal-binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1-16 fused to the N-terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti-Aβ N-terminal antibody WO2.

View Article and Find Full Text PDF

Influenza antiviral agents play important roles in modulating disease severity and in controlling pandemics while vaccines are prepared, but the development of resistance to agents like the commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here on a new class of specific, mechanism-based anti-influenza drugs that function through the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and we confirm this mode of action with structural and mechanistic studies. These compounds function in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro.

View Article and Find Full Text PDF

The recent development of X-ray free-electron laser sources has created new opportunities for the structural analysis of protein nanocrystals. The extremely small sizes of the crystals, as well as imperfections of the crystal structure, result in an interference phenomenon in the diffraction pattern. With decreasing crystallite size the structural imperfections play a role in the formation of the diffraction pattern that is comparable in importance to the size effects and should be taken into account during the data analysis and structure reconstruction processes.

View Article and Find Full Text PDF