CRISPR-Cas systems are adaptive immune systems in prokaryotes, providing resistance against invading viruses and plasmids. The identification of CRISPR loci is currently a non-standardized, ambiguous process, requiring the manual combination of multiple tools, where existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation and assessment capabilities of the detected CRISPR loci. Our CRISPRloci server provides the first resource for the prediction and assessment of all possible CRISPR loci.
View Article and Find Full Text PDFMotivation: CRISPR-Cas are important systems found in most archaeal and many bacterial genomes, providing adaptive immunity against mobile genetic elements in prokaryotes. The CRISPR-Cas systems are encoded by a set of consecutive cas genes, here termed cassette. The identification of cassette boundaries is key for finding cassettes in CRISPR research field.
View Article and Find Full Text PDFBackground: CRISPR-Cas genes are extraordinarily diverse and evolve rapidly when compared to other prokaryotic genes. With the rapid increase in newly sequenced archaeal and bacterial genomes, manual identification of CRISPR-Cas systems is no longer viable. Thus, an automated approach is required for advancing our understanding of the evolution and diversity of these systems and for finding new candidates for genome engineering in eukaryotic models.
View Article and Find Full Text PDFBackground: Biclustering techniques are capable of simultaneously clustering rows and columns of a data matrix. These techniques became very popular for the analysis of gene expression data, since a gene can take part of multiple biological pathways which in turn can be active only under specific experimental conditions. Several biclustering algorithms have been developed in the past recent years.
View Article and Find Full Text PDF