Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6.
View Article and Find Full Text PDFUnderstanding the excited-state dynamics in conjugated systems can lead to their better utilization in optical sensors, organic photovoltaics (OPVs), and organic light-emitting diodes (OLEDs). We present the synthesis of self-assembled coordination polymers comprising two types of fluorescent moieties: discrete fluorene oligomers of a well-defined length (n = 1-9) connected via aluminum(III) bis(8-quinolinolate)acetylacetone joints. Due to their well-defined structure, these materials allowed for a detailed study of energy migration processes within the materials.
View Article and Find Full Text PDFThe focus of this study was to demonstrate that, in the luminescent sensors, the signal transduction may possibly be the most important part in the sensing process. Rational design of fluorescent sensor arrays for cations utilizing extended conjugated chromophores attached to 8-hydroxyquinoline is reported. All of the optical sensors utilized in the arrays comprise the same 8-hydroxyquinoline (8-HQ) receptor and various conjugated chromophores to yield a different response to various metal cations.
View Article and Find Full Text PDFLong-range triplet excited-state equilibration occurs over a nanometric distance between platinum(II) 8-quinolinolate (3Ptq2 = 1.87 eV) and platinum(II) tetraphenylporphyrin (3PtTPP = 1.89 eV).
View Article and Find Full Text PDF8-Hydroxyquinoline-based ligands with extended conjugated fluorophores were designed to provide turn-on and ratiometric signal output optimized for use in fluorescence-based sensor arrays, where the changes in blue and green channels of the RGB signal are used to distinguish between cationic analytes.
View Article and Find Full Text PDFA series of conjugated materials based on oligomers of the para-phenylene type and oligothiophenes was prepared, and their phosphorescence spectra were recorded at 77 K using a pulsed flash-lamp as a light source and gated detection. The triplet energies of the oligomers were estimated and correlated with their chemical structure. It was found that simple changes in the building block sequence in the thiophene-containing oligomers allowed for tuning the triplet energy from 1.
View Article and Find Full Text PDFBlue-emitting heteroleptic aluminum(III) bis(2-methyl-8-quinolinolate)phenolate complexes were synthesized. A tunable, blue-to-green emission is achieved by attaching electron-withdrawing modulators to the emisssive quinaldinate ligand. The electronic nature of modulator substituents attached to the position of the highest HOMO (highest occupied molecular orbital) density is used to modulate ligand HOMO levels to achieve effective emission tuning to obtain blue-emitting materials.
View Article and Find Full Text PDFDonor-bridge-acceptor triads consisting of the Alq3 complex, oligofluorene bridge, and PtII tetraphenylporphyrin (PtTPP) were synthesized. The triads were designed to study the energy level/distance-dependence in energy transfer both in a solution and in solid state. The materials show effective singlet transfer from the Alq3-fluorene fluorophore to the porphyrin, while the triplet energy transfer, owing to the shorter delocalization of triplet excitons, appears to take place via a triplet energy cascade.
View Article and Find Full Text PDFThe unique electron-transport and emissive properties of tris(8-quinolinolate) aluminum(III) (Alq(3)) have resulted in extensive use of this material for small molecular organic light-emitting diode (OLED) fabrication. So far, efforts to prepare stable and easy-to-process red/green/blue (RGB)-emitting Alq(3) derivatives have met with only a limited success. In this paper, we describe how the electronic nature of various substituents, projected via an arylethynyl or aryl spacer to the position of the highest HOMO density (C5), may be used for effective emission tuning to obtain blue-, green-, and red-emitting materials.
View Article and Find Full Text PDFA simple yet effective strategy for synthesis of 5-aryl-8-quinolinolate-based electroluminophores with tunable emission wavelengths is presented. Two different pathways for the attachment of electron-donating or electron-withdrawing aryl groups to the 5-position of the quinolinolate ligand via Suzuki coupling were developed. A successful tuning in the emission color was achieved: the emission wavelength was found to correlate with the Hammett constant of the respective substituents, providing a powerful strategy for prediction of the optical properties of new electroluminophores.
View Article and Find Full Text PDF