Introduction: Inherited lipodystrophies are a group of rare diseases defined by severe reduction in adipose tissue mass and classified as generalized or partial. We report a non-familial (sporadic) case of partial lipodystrophy caused by a novel genetic mechanism involving closely linked pathogenic variants in the gene.
Methods: A female adult with partial lipodystrophy and her parents were evaluated for gene variants across the exome under different mendelian inheritance models (autosomal dominant, recessive, compound heterozygous, and X-linked) to find pathogenic variants.
Most known types of nonsyndromic monogenic obesity are caused by rare mutations in genes of the leptin-melanocortin pathway controlling appetite and adiposity. In contrast, congenital generalized lipodystrophy represents the most extreme form of leanness in humans caused by recessive mutations in four genes involved in phospholipid/triglyceride synthesis and lipid droplet/caveolae structure. In this disease, the inability to store triglyceride in adipocytes results in hypoleptinemia and ectopic hepatic and muscle fat accumulation leading to fatty liver, hypertriglyceridemia and severe insulin resistance.
View Article and Find Full Text PDFObesity and cholesterol gallstone disease (GSD) are frequently coexisting diseases; therefore and considering the current worldwide obesity epidemics, a precise understanding of the pathophysiological relationships between GSD and insulin resistance (IR) is important. Classically, obesity has been understood as a risk factor for GSD and the gallbladder (GB) viewed as a simple bile reservoir, with no metabolic roles whatsoever. However, consistent evidence has showed that both GSD and cholecystectomy associates with fatty liver and IR, raising the possibility that the GB is indeed an organ with metabolic regulatory roles.
View Article and Find Full Text PDFBackground/objectives: Abdominal obesity (AO) is associated with elevated risk for cardiovascular diseases; however, this association is less clear for non-obese people. We estimated the association of AO and cardiovascular risk factors (CVRF) and disease in non-obese adult individuals from Chile.
Subjects/methods: 5248 adults (15 years of age or older) of both sexes from the Chilean National Health Survey (October 2009 -September 2010, response rate 85%.
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non-shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions.
View Article and Find Full Text PDFThe synthesis of cholesterol and fatty acids (FA) in the liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here, we genetically deleted from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in the liver. Surprisingly, we found that elimination of in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c.
View Article and Find Full Text PDFAims: Pancreatic β-cells synthesize and release serotonin (5 hydroxytryptamine, 5HT); however, the role of 5HT receptors on glucose stimulated insulin secretion (GSIS) and the mechanisms mediating this function is not fully understood. The aims of this study were to determine the expression profile of 5HT receptors in murine MIN6 β-cells and to examine the effects of pharmacological activation of 5HT receptor Htr2b on GSIS and mitochondrial function.
Materials And Methods: mRNA levels of 5HT receptors in MIN6 cells were quantified by RT qPCR.
Objective: Characterize the cellular and molecular events responsible for lipodystrophy in AGPAT2 deficient mice.
Methods: Adipose tissue and differentiated MEF were assessed using light and electron microscopy, followed by protein (immunoblots) and mRNA analysis (qPCR). Phospholipid profiling was determined by electrospray ionization tandem mass spectrometry (ESI-MS/MS).
Aims: Mutations in 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) result in lipodystrophy, insulin resistance and diabetes. Autophagy is required for normal adipogenesis and adipose tissue development. The aim of this study was to determine whether impaired autophagy or excessive cell death underlie the adipogenic inability of Agpat2(-/-) mice preadipocytes.
View Article and Find Full Text PDFJ Physiol Biochem
September 2015
Lipodystrophy encompass a group of heterogeneous disorders consisting in marked reduction, absence, and/or the redistribution of adipose tissue. Lipodystrophy is frequently complicated with severe insulin resistance, diabetes, hyperlipidemia, and fatty liver. Anatomically, lipodystrophies can be partial or generalized.
View Article and Find Full Text PDFThe adipose tissue is an endocrine organ that produces a variety of protein hormones. One of them is leptin, which regulates several critical functions at the central nervous system such as caloric intake, basal energy expenditure, reproduction, glucose and lipid metabolism and osteogenesis. Acting at a local level, leptin modulates the immune system and promotes liver fibrogenesis.
View Article and Find Full Text PDFThe most studied roles of serotonin (5-hydroxytryptamine, 5HT) have been related to its action in the Central Nervous System (CNS). However, most of 5HT is produced outside the CNS, mainly in the enterochromaffin cells of the gut. Additionally, other tissues such as the endocrine pancreas, particularly β-cells, have its own serotonin system able to synthesize, secrete and respond to extracellular 5HT through cell surface receptors subtypes that have been grouped in 7 families (HTR1-7).
View Article and Find Full Text PDFCongenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by extreme reduction of white adipose tissue (WAT) mass. CGL type 1 is the most frequent form and is caused by mutations in AGPAT2. Genetic and clinical studies were performed in two affected sisters of a Chilean family.
View Article and Find Full Text PDFCholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions.
View Article and Find Full Text PDFLeptin is essential for energy homeostasis and regulation of food intake. Patients with congenital generalized lipodystrophy (CGL) due to mutations in 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2) and the CGL murine model (Agpat2(-/-) mice) both have severe insulin resistance, diabetes mellitus, hepatic steatosis, and low plasma leptin levels. In this study, we show that continuous leptin treatment of Agpat2(-/-) mice for 28 days reduced plasma insulin and glucose levels and normalized hepatic steatosis and hypertriglyceridemia.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
November 2013
Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions.
View Article and Find Full Text PDFLoss-of-function mutations in 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) 2 in humans and mice result in loss of both the white and brown adipose tissues from birth. AGPAT2 generates precursors for the synthesis of glycerophospholipids and triacylglycerols. Loss of adipose tissue, or lipodystrophy, results in hyperinsulinemia, diabetes mellitus, and severe hepatic steatosis.
View Article and Find Full Text PDFGSD-1 (glycogen storage disease type 1) is caused by an inherited defect in glucose-6-phosphatase activity, resulting in a massive accumulation of hepatic glycogen content and an induction of de novo lipogenesis. The chlorogenic acid derivative S4048 is a pharmacological inhibitor of the glucose 6-phosphate transporter, which is part of glucose-6-phosphatase, and allows for mechanistic studies concerning metabolic defects in GSD-1. Treatment of mice with S4048 resulted in an ~60% reduction in blood glucose, increased hepatic glycogen and triacylglycerol (triglyceride) content, and a markedly enhanced hepatic lipogenic gene expression.
View Article and Find Full Text PDF