We demonstrate fabrication of microbiosensors utilizing a simple, rapid biomimetic silicification method catalyzed by poly-L-lysine at ambient temperature to provide a mild and efficient method for entrapment of the enzymes required for a range of analytes. To obtain a robust poly-L-lysine layer for precipitating silica onto the Pt surface, a Pt microelectrode was first functionalized with abundant carboxyl groups by electrochemical deposition of poly(pyrrole-1-propanoic acid). By means of zero length cross-linking reagents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide sodium salt (NHSS), poly-L-lysine was covalently immobilized onto microelectrode surface.
View Article and Find Full Text PDFThe properties of native and oxidised graphene layered carbon nanofibres are compared, and their utilisation in enzyme biosensor systems using different immobilisation methods are evaluated. The efficient oxidation of carbon nanofibres with concentrated H(2)SO(4)/HNO(3) is confirmed by Raman spectroscopy while the introduction of carboxylic acid groups on the surface of the fibres by titration studies. The oxidised fibres show enhanced oxidation efficiency to hydrogen peroxide, while at the same time they exhibit a more efficient and selective interaction with enzymes.
View Article and Find Full Text PDFBiomimetically synthesized silica and conductive activated carbon nanofibers (CNFs) are used in a synergistic manner for the development of a novel electrochemical biosensor system. Poly(L-lysine) templated silica grows and encapsulates the CNF-immobilized enzyme generating a highly stabilizing nanostructured environment for the underlying protein. Concurrently, CNFs provide both the required surface area for the high-capacity enzyme immobilization required in biosensors as well as direct electron transfer to the inner platinum transducer.
View Article and Find Full Text PDFMonitoring of the organophosphorus pesticides dichlorvos and paraoxon at very low levels has been achieved with liposome-based nano-biosensors. The enzyme acetylcholinesterase was effectively stabilized within the internal nano-environment of the liposomes. Within the liposomes, the pH sensitive fluorescent indicator pyranine was also immobilized for the optical transduction of the enzymatic activity.
View Article and Find Full Text PDFNanoporous materials with different pore sizes are evaluated as immobilization and stabilization matrices of proteins for the development of highly stable biosensors. It has been proven experimentally that confinement of proteins in cages with a diameter that is 2-6 times larger than their size increases considerably the stability of the biomolecules, as has been shown earlier by theoretical calculations. Porous silica beads with pore sizes of 10nm were utilized for the immobilization of the enzymes HRP and GOx with diameters in the order of 5 and 7 nm, respectively.
View Article and Find Full Text PDFThe use of highly activated carbon nanofibers for the design of catalytic electrochemical biosensors is demonstrated. The direct immobilization of enzymes onto the surface of carbon nanofibers is shown to be a highly efficient method for the development of a new class of very sensitive, stable, and reproducible electrochemical biosensors. These results establish the fact that the carbon nanofiber is the best matrix so far described for the development of biosensors, far superior to carbon nanotubes or graphite powder.
View Article and Find Full Text PDFBiosens Bioelectron
August 2005
The encapsulation of enzymes in microenvironments and especially in liposomes, has proven to greatly improve enzyme stabilization against unfolding, denaturation and dilution effects. Combining this stabilization effect, with the fact that liposomes are optically translucent, we have designed nano-sized spherical biosensors. In this work liposome-based biosensors are prepared by encapsulating the enzyme acetylcholinesterase (AChE) in L-a phosphatidylcholine liposomes resulting in spherical optical biosensors with an average diameter of 300+/-4 nm.
View Article and Find Full Text PDFBiosens Bioelectron
February 2005
In this study we present the results obtained from efforts to stabilize the inherently unstable m-AChE in nanoporous materials, for the development of biosensors with increased operational stability. Based on existing theoretical models, the entrapment of proteins into relatively small rigid cages drastically increases the stability of these proteins, as this is manifested by their decreased tendency to unfold. The use of two different meso/nanomaterials for the immobilization of the m-AChE shows that there is both a decrease in the leaching of the protein from the biosensor membrane to the test solution, as well as a drastic increase in the operational stability of the resulting biosensor.
View Article and Find Full Text PDF