Unlabelled: Varicella zoster virus (VZV) reactivates from ganglionic sensory neurons to produce herpes zoster (shingles) in a unilateral dermatomal distribution, typically in the thoracic region. Reactivation not only heightens the risk of stroke and other neurological complications but also increases susceptibility to co-infections with various viral and bacterial pathogens at sites distant from the original infection. The mechanism by which VZV results in complications remote from the initial foci remains unclear.
View Article and Find Full Text PDFSimian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aβ42/Aβ40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) primarily infects the respiratory epithelium, but growing evidence suggests that it may also be responsible for neurologic sequelae. In 3-dimensional microphysiologic peripheral nerve cultures, RSV infected neurons, macrophages, and dendritic cells along 2 distinct trajectories depending on the initial viral load. Low-level infection was transient, primarily involved macrophages, and induced moderate chemokine release with transient neural hypersensitivity.
View Article and Find Full Text PDFSARS-CoV-2 infection can cause persistent respiratory sequelae. However, the underlying mechanisms remain unclear. Here we report that sub-lethally infected K18-human ACE2 mice show patchy pneumonia associated with histiocytic inflammation and collagen deposition at 21 and 45 days post infection (DPI).
View Article and Find Full Text PDFSimian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aβ42/Aβ40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection.
View Article and Find Full Text PDFHIV vaccine mediated efficacy, using an expanded live attenuated recombinant varicella virus-vectored SIV rSVV-SIVgag/env vaccine prime with adjuvanted SIV-Env and SIV-Gag protein boosts, was evaluated in a female rhesus macaques (RM) model against repeated intravaginal SIV challenges. Vaccination induced anti-SIV IgG responses and neutralizing antibodies were found in all vaccinated RMs. Three of the eight vaccinated RM remained uninfected (vaccinated and protected, VP) after 13 repeated challenges with the pathogenic SIVmac251-CX-1.
View Article and Find Full Text PDFBackground: Simian varicella virus (SVV) is a primate herpesvirus that causes a natural varicella-like disease in Old World monkeys and may cause epizootics in facilities housing nonhuman primates. SVV infection of nonhuman primates is used as an experimental model to investigate varicella pathogenesis and to develop antiviral strategies.
Methods: An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect SVV antibodies in infected rhesus macaque monkeys.
Latent varicella zoster virus (VZV) has been detected in human adrenal glands, raising the possibility of virus-induced adrenal damage and dysfunction during primary infection or reactivation. Rare cases of bilateral adrenal hemorrhage and insufficiency associated with VZV reactivation have been reported. Since there is no animal model for VZV infection of adrenal glands, we obtained adrenal glands from two non-human primates (NHPs) that spontaneously developed varicella from primary simian varicella virus (SVV) infection, the NHP VZV homolog.
View Article and Find Full Text PDFVaricella and zoster, produced by varicella-zoster virus (VZV), are associated with an increased risk of stroke that may be due to persistent inflammation and hypercoagulability. Because substance P is associated with inflammation, hypercoagulability, and atherosclerotic plaque rupture that may contribute to increased stroke risk after VZV infection, we measured serum substance P in simian varicella virus-infected rhesus macaques. We found significantly increased and persistent serum substance P concentrations during varicella and zoster compared with pre-inoculation, supporting the hypothesis that VZV-induced increases in serum substance P may contribute to increased stroke risk associated with VZV infection.
View Article and Find Full Text PDFVaricella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash.
View Article and Find Full Text PDFSimian varicella virus (SVV) infection of non-human primates is the counterpart of varicella zoster virus (VZV) infection in humans. To develop non-invasive methods of assessing SVV infection, we tested for the presence of SVV DNA in saliva, as has been documented in human VZV infection, and in buccal cells to determine whether epithelial cells might provide a more reliable source of material for analysis. Five rhesus macaques intratracheally inoculated with SVV all developed varicella with viremia and macular-papular skin rash in 1-2 weeks, which resolved followed by establishment of latency.
View Article and Find Full Text PDFWestern, Eastern, and Venezuelan equine encephalitis viruses (WEEV, EEEV, and VEEV, respectively) are important mosquito-borne agents that pose public health and bioterrorism threats. Despite considerable advances in understanding alphavirus replication, there are currently no available effective vaccines or antiviral treatments against these highly lethal pathogens. To develop a potential countermeasure for viral encephalitis, we generated a trivalent, or three-component, EEV vaccine composed of virus-like particles (VLPs).
View Article and Find Full Text PDFFor an effective T-cell activation and response, co-stimulation is required in addition to the antigen-specific signal from their antigen receptors. The CD2/CD58 interaction is considered as one of the most important T-cell co-stimulatory pathways for T-cell activation and proliferation, and its role in regulating intestinal T-cell function in acute and chronic SIV -infected macaques is poorly documented. Here, we demonstrated a significant reduction of CD58 expression in both T- and B-cell populations during acute SIV infection along with high plasma viral load and a loss of intestinal CD4 T cells compared to SIV-uninfected control macaques.
View Article and Find Full Text PDFRhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys.
View Article and Find Full Text PDFSimian varicella virus (SVV), the primate counterpart of varicella-zoster virus, causes varicella (chickenpox), establishes latency in ganglia, and reactivates to produce zoster. We previously demonstrated that a recombinant SVV expressing enhanced green fluorescent protein (rSVV.eGFP) is slightly attenuated both in culture and in infected monkeys.
View Article and Find Full Text PDFUnlabelled: Like varicella-zoster virus (VZV), simian varicella virus (SVV) reactivates to produce zoster. In the present study, 5 rhesus macaques were inoculated intrabronchially with SVV, and 5 months later, 4 monkeys were immunosuppressed; 1 monkey was not immunosuppressed but was subjected to the stress of transportation. In 4 monkeys, a zoster rash developed 7 to 12 weeks after immunosuppression, and a rash also developed in the monkey that was not immunosuppressed.
View Article and Find Full Text PDFSimian varicella virus (SVV) infection of non-human primates models human varicella zoster virus (VZV) infection. Assessment of cell signaling immune responses in monkeys after primary SVV infection, after immunosuppression and during reactivation revealed strong pro-inflammatory responses and lesser anti-inflammatory components during varicella and reactivation. Pro-inflammatory mediators elevated during varicella included interferon-gamma (IFN-γ), interleukin (IL)-6, monocyte chemoattractant protein (MCP-1), interferon inducible T-cell α chemoattractant protein (I-TAC), interferon processing protein (IP-10), and anti-inflammatory interleukin-1 Receptor antagonist (IL-1Ra).
View Article and Find Full Text PDFLike varicella zoster virus in humans, simian varicella virus (SVV) becomes latent in ganglionic neurons along the entire neuraxis and reactivates in immunosuppressed monkeys. Five rhesus macaques were inoculated with SVV; 142 days later (latency), four monkeys were immunosuppressed, and T cells were analyzed for naïve, memory, and effector phenotypes and expression of programmed death receptor-1 (PD-1; T cell exhaustion). All T cell subsets decreased during immunosuppression and except for CD8 effectors, peaked 2 weeks before zoster.
View Article and Find Full Text PDFSimian varicella zoster virus (SVV) infection of non-human primates serves as a model to study varicella zoster virus (VZV) infection and pathogenesis in humans. While macroarray analysis detected all 69 predicted unique open reading frames (ORFs) in SVV-infected cells in culture, it lacked the sensitivity to detect the low-abundance transcripts expressed in latently infected monkey ganglia. Recently, a multiplex RT-PCR assay using the GenomeLab Genetic Analysis System (GeXPS) identified 10 VZV transcripts in latently-infected human ganglia.
View Article and Find Full Text PDFGanglia of monkeys with reactivated simian varicella virus (SVV) contained more CD8 than CD4 T cells around neurons. The abundance of CD8 T cells was greater less than 2 months after reactivation than that at later times and correlated with that of CXCL10 RNA but not with those of SVV protein or open reading frame 61 (ORF61) antisense RNA. CXCL10 RNA colocalized with T-cell clusters.
View Article and Find Full Text PDFBackground: An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV) vector - simian immunodeficiency virus (SIV) envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1.
Findings: The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals.
Varicella-zoster virus (VZV) causes varicella (chickenpox), becomes latent in ganglia along the entire neuraxis, and may reactivate to cause herpes zoster (shingles). VZV may infect ganglia via retrograde axonal transport from infected skin or through hematogenous spread. Simian varicella virus (SVV) infection of rhesus macaques provides a useful model system to study the pathogenesis of human VZV infection.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a serious disease of children, responsible for an estimated 160,000 deaths per year worldwide. Despite the ongoing need for global prevention of RSV and decades of research, there remains no licensed vaccine. Sendai virus (SeV) is a mouse parainfluenza virus-type 1 which has been previously shown to confer protection against its human cousin, human parainfluenza virus-type 1 in African green monkeys (AGM).
View Article and Find Full Text PDFStudies of varicella-zoster virus gene expression during latency require the acquisition of human ganglia at autopsy. Concerns have been raised that the virus might reactivate immediately after death. Because features of varicella-zoster virus latency are similar in primate and human ganglia, we examined virus gene expression in tissues either processed immediately or kept at 4°C for 30 h before necropsy of two monkeys inoculated with simian varicella-zoster virus and euthanized 117 days later.
View Article and Find Full Text PDF