Aims: We aimed to assess intervendor agreement of global (GLS) and regional longitudinal strain by vendor-specific software after EACVI/ASE Industry Task Force Standardization Initiatives for Deformation Imaging.
Methods And Results: Fifty-five patients underwent prospective dataset acquisitions on the same day by the same operator using two commercially available cardiac ultrasound systems (GE Vivid E9 and Philips iE33). GLS and regional peak longitudinal strain were analyzed offline using corresponding vendor-specific software (EchoPAC BT13 and QLAB version 10.
Objective: Percutaneous valve intervention for severe mitral regurgitation (MR) using the MitraClip is a novel technology. Quantitative assessment of residual MR by transthoracic echocardiography (TTE) is challenging, with multiple eccentric jets and artifact from the clips. Cardiovascular magnetic resonance (CMR) is the reference standard for left and right ventricular volumetric assessment.
View Article and Find Full Text PDFBackground: The aim of this study was to determine whether global strains derived from three-dimensional (3D) speckle-tracking echocardiography (STE) are as accurate as left ventricular (LV) ejection fraction (LVEF) obtained by two-dimensional (2D) and 3D echocardiography in the quantification of LV function.
Methods: Two-dimensional and 3D echocardiography and 2D and 3D STE were performed in 88 patients (LVEF range, 17%-79%). Two-dimensional and 3D global longitudinal strain (GLS), global circumferential strain (GCS), global radial strain, and global area strain were quantified and correlated with LV function determined by 2D and 3D echocardiographic LVEF.