Publications by authors named "Vicki Gordon"

Targeted therapies such as venetoclax (VEN) (Bcl-2 inhibitor) have revolutionized the treatment of chronic lymphocytic leukemia (CLL). We previously reported that persister CLL cells in treated patients overexpress multiple antiapoptotic proteins and display resistance to proapoptotic agents. Here, we demonstrated that multidrug-resistant CLL cells in vivo exhibited apoptosis restriction at a pre-mitochondrial level due to insufficient activation of the Bax and Bak (Bax/Bak) proteins.

View Article and Find Full Text PDF

The Bcl-2 inhibitor venetoclax has yielded exceptional clinical responses in chronic lymphocytic leukemia (CLL). However, de novo resistance can result in failure to achieve negative minimal residual disease and predicts poor treatment outcomes. Consequently, additional proapoptotic drugs, such as inhibitors of Mcl-1 and Bcl-xL, are in development.

View Article and Find Full Text PDF

resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in Mantle Cell Lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination.

View Article and Find Full Text PDF

Therapies targeting oncogenic drivers rapidly induce compensatory adaptive responses that blunt drug effectiveness, contributing to therapeutic resistance. Adaptive responses are characteristic of robust cell signaling networks, and thus there is increasing interest in drug combinations that co-target the driver and the adaptive response. An alternative approach to co-inhibiting oncogenic and adaptive targets is to identify a critical node where the activities of these targets converge.

View Article and Find Full Text PDF

Constitutively activated signaling molecules are often the primary drivers of malignancy, and are favored targets for therapeutic intervention. However, the effectiveness of targeted inhibition of cell signaling can be blunted by compensatory signaling which generates adaptive resistance mechanisms and reduces therapeutic responses. Therefore, it is important to identify and target these compensatory pathways with combinations of targeted agents to achieve durable clinical benefit.

View Article and Find Full Text PDF

Previously we determined that S81 is the highest stoichiometric phosphorylation on the androgen receptor (AR) in response to hormone. To explore the role of this phosphorylation on growth, we stably expressed wild-type and S81A mutant AR in LHS and LAPC4 cells. The cells with increased wild-type AR expression grow faster compared with parental cells and S81A mutant-expressing cells, indicating that loss of S81 phosphorylation limits cell growth.

View Article and Find Full Text PDF

The androgen receptor (AR) remains functionally important in the development and progression of prostate cancer even when the disease seems androgen "independent." Because signal transduction by growth factor receptors increases in advanced prostate cancer and is capable of sensitizing the AR to androgen, there is considerable interest in determining the mechanisms by which signaling systems can modulate AR function. We show herein that the adaptor/scaffolding protein receptor for activated C kinase 1 (RACK1), which was previously reported to interact with the AR, modulates the tyrosine phosphorylation of AR and its interaction with the Src tyrosine kinase.

View Article and Find Full Text PDF

Activation of signal transduction kinase cascades is known to alter androgen receptor (AR) activity, but the molecular mechanisms are still poorly defined. Here we show that stress kinase signaling regulates Ser 650 phosphorylation and AR nuclear export. In LNCaP prostate cancer cells, activation of either MAPK kinase (MKK) 4:c-Jun N-terminal kinase (JNK) or MKK6:p38 signaling pathways increased Ser 650 phosphorylation, whereas pharmacologic inhibition of JNK or p38 signaling led to a reduction of AR Ser 650 phosphorylation.

View Article and Find Full Text PDF