Publications by authors named "Vicki Gold"

Archaea produce various protein filaments with specialised functions. While some archaea produce only one type of filament, the archaeal model species Sulfolobus acidocaldarius generates four. These include rotary swimming propellers analogous to bacterial flagella (archaella), pili for twitching motility (Aap), adhesive fibres (threads), and filaments facilitating homologous recombination upon UV stress (UV pili).

View Article and Find Full Text PDF

Amongst the major types of archaeal filaments, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus system (Ups) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Ups in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility.

View Article and Find Full Text PDF

With the global challenge of antimicrobial resistance (AMR), interest in the development of antibiotic alternatives has surged worldwide. While phage therapy is not a new phenomenon, technological and socio-economic factors have limited its implementation in the Western world. There is now a resurged effort, especially in the UK, to address these challenges.

View Article and Find Full Text PDF

Secretin proteins form pores in the outer membranes of Gram-negative bacteria, and as such provide a means of transporting a wide variety of molecules out of or in to the cell. They are important components of several different bacterial secretion systems, surface filament assembly machineries, and virus assembly complexes. Despite accommodating a diverse assortment of molecules, including virulence factors, folded proteins, and whole viruses, the secretin family of proteins is highly conserved, particularly in their membrane-embedded β-barrel domain.

View Article and Find Full Text PDF

Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life.

View Article and Find Full Text PDF

Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we determined the structure of the ATP synthase dimer from the nematode worm C.

View Article and Find Full Text PDF

Translational control is an essential process for the cell to adapt to varying physiological or environmental conditions. To survive adverse conditions such as low nutrient levels, translation can be shut down almost entirely by inhibiting ribosomal function. Here we investigated eukaryotic hibernating ribosomes from the microsporidian parasite Spraguea lophii in situ by a combination of electron cryo-tomography and single-particle electron cryo-microscopy.

View Article and Find Full Text PDF

The closely related Ff filamentous phages (f1, fd, and M13) have taken a fantastic journey over the past 60 years, from the urban sewerage from which they were first isolated, to their use in high-end technologies in multiple fields. Their relatively small genome size, high titers, and the virions that tolerate fusion proteins make the Ffs an ideal system for phage display. Folding of the fusions in the oxidizing environment of the periplasm makes the Ff phages a platform that allows display of eukaryotic surface and secreted proteins, including antibodies.

View Article and Find Full Text PDF

The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex.

View Article and Find Full Text PDF

Today, the antimicrobial resistance (AMR) crisis is shaping a world where previously treatable infections can kill. This has revitalised the development of antibiotic alternatives, such as phage therapy. The therapeutic use of phages, viruses that infect and kill bacteria, was first explored over a century ago.

View Article and Find Full Text PDF

Phages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses.

View Article and Find Full Text PDF

Gram-negative bacteria are surrounded by two protein-rich membranes with a peptidoglycan layer sandwiched between them. Together they form the envelope (or cell wall), crucial for energy production, lipid biosynthesis, structural integrity, and for protection against physical and chemical environmental challenges. To achieve envelope biogenesis, periplasmic and outer-membrane proteins (OMPs) must be transported from the cytosol and through the inner-membrane, via the ubiquitous SecYEG protein-channel.

View Article and Find Full Text PDF

Pili are filamentous surface extensions that play roles in bacterial and archaeal cellular processes such as adhesion, biofilm formation, motility, cell-cell communication, DNA uptake and horizontal gene transfer. The model archaeaon Sulfolobus acidocaldarius assembles three filaments of the type-IV pilus superfamily (archaella, archaeal adhesion pili and UV-inducible pili), as well as a so-far uncharacterised fourth filament, named "thread". Here, we report on the cryo-EM structure of the archaeal thread.

View Article and Find Full Text PDF

Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species.

View Article and Find Full Text PDF

The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.

View Article and Find Full Text PDF

Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11.

View Article and Find Full Text PDF

The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent - hydrophobic β-barrel uter-embrane roteins (OMPs) - are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation. OMPs are then offloaded to the β-arrel ssembly achinery (BAM) in the outer-membrane for insertion and folding.

View Article and Find Full Text PDF

Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition.

View Article and Find Full Text PDF

Surface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic, and mechanical stability, the formation of a semipermeable protective barrier around the cell, and cell-cell interaction, as well as surface adhesion. Despite the central importance of S-layers for archaeal life, their 3-dimensional (3D) architecture is still poorly understood.

View Article and Find Full Text PDF

Lunapark (Lnp) is a conserved membrane protein that localizes to and stabilizes three-way junctions of the tubular ER network. In higher eukaryotes, phosphorylation of Lnp may contribute to the conversion of the ER from tubules to sheets during mitosis. Here, we report on the reconstitution of purified Lnp with phospholipids.

View Article and Find Full Text PDF

Bacteria and archaea are evolutionarily distinct prokaryotes that diverged from a common ancestor billions of years ago. However, both bacteria and archaea assemble long, helical protein filaments on their surface through a machinery that is conserved at its core. In both domains of life, the filaments are required for a diverse array of important cellular processes including cell motility, adhesion, communication and biofilm formation.

View Article and Find Full Text PDF
Article Synopsis
  • We used electron cryo-tomography to visualize how cytosolic ribosomes interact with mitochondria.
  • Our findings confirm that translation-arrested ribosomes are clustered around the TOM complex, linking localized translation to this organization.
  • Ribosomes bind to the mitochondrial membrane in specific clusters, particularly near crista junctions, suggesting a connection between protein synthesis and transport.
View Article and Find Full Text PDF

The visualization of membrane protein complexes in their natural membrane environment is a major goal in an emerging area of research termed structural cell biology. Such approaches provide important information on the spatial distribution of protein complexes in their resident cellular membrane systems and on the structural organization of multi-subunit membrane protein assemblies. We have developed a method to specifically label active membrane protein complexes in their native membrane environment with electron-dense nanoparticles coupled to an activating ligand, in order to visualize them by electron cryo-tomography.

View Article and Find Full Text PDF