Publications by authors named "Vicki Chandler"

Paramutation is a transfer of heritable silencing states between interacting endogenous alleles or between endogenous alleles and homologous transgenes. Prior results demonstrated that paramutation occurs at the P1-rr (red pericarp and red cob) allele of the maize p1 (pericarp color 1) gene when exposed to a transgene containing a 1.2-kb enhancer fragment (P1.

View Article and Find Full Text PDF

Faculty in graduate nursing education have been challenged when teaching first-year family nurse practitioner students to accurately assess a patient and build a subjective, objective, assessment, and plan note (SOAP note) through history taking and patient interviews. Students' familiarity with peer discussion can assist with learning the SOAP note process. Using peer discussion, faculty were able to make the learning process student friendly and useful in future clinical settings.

View Article and Find Full Text PDF

Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two subtypes of Pol IV and three subtypes of Pol V in maize.

View Article and Find Full Text PDF

Quiescent long-term somatic stem cells reside in plant and animal stem cell niches. Within the Arabidopsis root stem cell population, the Quiescent Centre (QC), which contains slowly dividing cells, maintains surrounding short-term stem cells and may act as a long-term reservoir for stem cells. The RETINOBLASTOMA-RELATED (RBR) protein cell-autonomously reinforces mitotic quiescence in the QC.

View Article and Find Full Text PDF

Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1) are the tandem repeats sufficient for paramutation, 2) do they need to be in an allelic position to mediate paramutation, and 3) is there an association between the ability to mediate paramutation and repeat DNA methylation levels? Paramutation was achieved using multiple transgenes containing the b1 tandem repeats, including events with tandem repeats of only one half of the repeat unit (413 bp), demonstrating that these sequences are sufficient for paramutation and an allelic position is not required for the repeats to communicate.

View Article and Find Full Text PDF

Short Interspersed Nuclear Elements (SINEs) are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs.

View Article and Find Full Text PDF

To understand the molecular mechanisms underlying paramutation, we examined the role of Unstable factor for orange1 (Ufo1) in maintaining paramutation at the maize pericarp color1 (p1) and booster1 (b1) loci. Genetic tests revealed that the Ufo1-1 mutation disrupted silencing associated with paramutation at both p1 and b1. The level of up regulation achieved at b1 was lower than that at p1, suggesting differences in the role Ufo1-1 plays at these loci.

View Article and Find Full Text PDF

Paramutation refers to the process by which homologous DNA sequences communicate in trans to establish meiotically heritable expression states. Although mechanisms are unknown, current data are consistent with the hypothesis that the establishment and heritable transmission of specific chromatin states underlies paramutation. Transcribed, noncoding tandem repeats and proteins implicated in RNA-directed transcriptional silencing in plants and yeast are required for paramutation, yet the specific molecules mediating heritable silencing remain to be determined.

View Article and Find Full Text PDF

Paramutation is the epigenetic transfer of information between alleles that leads to the heritable change of expression of one allele. Paramutation at the b1 locus in maize requires seven noncoding tandem repeat (b1TR) sequences located approximately 100 kb upstream of the transcription start site of b1, and mutations in several genes required for paramutation implicate an RNA-mediated mechanism. The mediator of paramutation (mop1) gene, which encodes a protein closely related to RNA-dependent RNA polymerases, is absolutely required for paramutation.

View Article and Find Full Text PDF

Paramutation is the ability of specific DNA sequences to communicate in trans to establish meiotically heritable expression states. Paramutation at the maize b1 locus is mediated by seven unique noncoding transcribed tandem repeats of 853 bp that are required to establish and maintain the meiotically heritable expression and distinct chromatin states associated with b1 paramutation. In this study, we report the identification of a CXC-domain protein CBBP (CXC domain b1-repeat binding protein) that binds to a defined region within the b1 tandem repeat sequence in vivo and in vitro.

View Article and Find Full Text PDF

Paramutation involves trans-interactions between alleles or homologous sequences that establish distinct gene expression states that are heritable for generations. It was first described in maize by Alexander Brink in the 1950s, with his studies of the red1 (r1) locus. Since that time, paramutation-like phenomena have been reported in other maize genes, other plants, fungi, and animals.

View Article and Find Full Text PDF

Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V.

View Article and Find Full Text PDF

Paramutation is the ability of an endogenous gene or a transgene to heritably silence another closely related allele or gene. At the maize p1 (pericarp color1) gene, paramutation is associated with decreases in transcript levels and reduced pigmentation of the endogenous allele that normally specifies red seed coat (pericarp) and cob pigmentation. Herein we demonstrate that this silencing occurs at the transcriptional level and that a specific enhancer fragment from p1 is sufficient to induce all aspects of paramutation.

View Article and Find Full Text PDF

Small RNAs from plants are known to be highly complex and abundant, with this complexity proportional to genome size. Most endogenous siRNAs in Arabidopsis are dependent on RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) for their biogenesis. Recent work has demonstrated that the maize MEDIATOR OF PARAMUTATION1 (mop1) gene is a predicted ortholog of RDR2.

View Article and Find Full Text PDF

Using the compiled human genome sequence, we systematically cataloged all tandem repeats with periods between 20 and 2000 bp and defined two subsets whose consensus sequences were found at either single-locus tandem repeats (slTRs) or multilocus tandem repeats (mlTRs). Parameters compiled for these subsets provide insights into mechanisms underlying the creation and evolution of tandem repeats. Both subsets of tandem repeats are nonrandomly distributed in the genome, being found at higher frequency at many but not all chromosome ends and internal clusters of mlTRs were also observed.

View Article and Find Full Text PDF

Background: Heterosis is the superior performance of F1 hybrid progeny relative to the parental phenotypes. Maize exhibits heterosis for a wide range of traits, however the magnitude of heterosis is highly variable depending on the choice of parents and the trait(s) measured. We have used expression profiling to determine whether the level, or types, of non-additive gene expression vary in maize hybrids with different levels of genetic diversity or heterosis.

View Article and Find Full Text PDF

Paramutation is the epigenetic transfer of information from one allele of a gene to another to establish a state of gene expression that is heritable for generations. RNA has recently emerged as a prominent mediator of this remarkable phenomenon in both maize and mice.

View Article and Find Full Text PDF

Paramutation is an allele-dependent transfer of epigenetic information, which results in the heritable silencing of one allele by another. Paramutation at the b1 locus in maize is mediated by unique tandem repeats that communicate in trans to establish and maintain meiotically heritable transcriptional silencing. The mop1 (mediator of paramutation1) gene is required for paramutation, and mop1 mutations reactivate silenced Mutator elements.

View Article and Find Full Text PDF

Plants with mutations in one of three maize genes, mop1, rmr1, and rmr2, are defective in paramutation, an allele-specific interaction that leads to meiotically heritable chromatin changes. Experiments reported here demonstrate that these genes are required to maintain the transcriptional silencing of two different transgenes, suggesting that paramutation and transcriptional silencing of transgenes share mechanisms. We hypothesize that the transgenes are silenced through an RNA-directed chromatin mechanism, because mop1 encodes an RNA-dependent RNA polymerase.

View Article and Find Full Text PDF

RNA interference (RNAi) is a powerful tool for functional genomics in a number of species. The logistics and procedures for doing high-throughput RNAi to investigate the functions of large numbers of genes in Arabidopsis thaliana and in Zea mays are described. Publicly available plasmid vectors that facilitate the stable chromosomal integration of inverted repeat transgenes that trigger RNAi have been used to generate more than 50 independent transgenic lines each in Arabidopsis and maize.

View Article and Find Full Text PDF

The R2R3 MYB transcription factor C1 requires the basic helix-loop-helix factor R as an essential co-activator for the transcription of maize anthocyanin genes. In contrast, the R2R3 MYB protein P1 activates a subset of the C1-regulated genes independently of R. Substitution of six amino acids in P1 with the C1 amino acids results in P1(*), whose activity on C1-regulated and P1-regulated genes is R-dependent or R-enhanced, respectively.

View Article and Find Full Text PDF

The pale aleurone color1 (pac1) locus, required for anthocyanin pigment in the aleurone and scutellum of the Zea mays (maize) seed, was cloned using Mutator transposon tagging. pac1 encodes a WD40 repeat protein closely related to anthocyanin regulatory proteins ANTHOCYANIN11 (AN11) (Petunia hybrida [petunia]) and TRANSPARENT TESTA GLABRA1 (TTG1) (Arabidopsis thaliana). Introduction of a 35S-Pac1 transgene into A.

View Article and Find Full Text PDF

Histone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization.

View Article and Find Full Text PDF