Whole-exome sequencing of two unrelated kindreds with systemic autoimmune disease featuring antinuclear antibodies with IgG4 elevation uncovered an identical ultrarare heterozygous TNIP1 variant segregating with disease. Mice with the orthologous Q346P variant developed antinuclear autoantibodies, salivary gland inflammation, elevated IgG2c, spontaneous germinal centers and expansion of age-associated B cells, plasma cells and follicular and extrafollicular helper T cells. B cell phenotypes were cell-autonomous and rescued by ablation of Toll-like receptor 7 (TLR7) or MyD88.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a clear genetic component. While most SLE patients carry rare gene variants in lupus risk genes, little is known about their contribution to disease pathogenesis. Amongst them, SH2B3-a negative regulator of cytokine and growth factor receptor signaling-harbors rare coding variants in over 5% of SLE patients.
View Article and Find Full Text PDFAcross the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKL in biological membranes and MLKL overriding pharmacological and endogenous inhibition of MLKL.
View Article and Find Full Text PDFObjective: Increased Toll-like receptor 7 (TLR-7) signaling leading to the production of type I interferon (IFN) is an important contributor to human systemic lupus erythematosus (SLE). Protein kinase C and casein kinase substrate in neurons 1 (PACSIN1), a molecule that regulates synaptic vesicle recycling, has been linked to TLR-7/TLR-9-mediated type I IFN production in humans and mice, but the underlying mechanism is unknown. We undertook this study to explore the pathogenicity and underlying mechanism of a de novo PACSIN1 missense variant identified in a child with SLE.
View Article and Find Full Text PDFAccumulation of immunoglobulin and complement components within the kidneys is a hallmark of glomerulonephritis. Staining and detection of IgG, IgA, IgM, and C3 deposits can assist in diagnosing the underlying causes of nephritis and has implications for the pathological processes underpinning glomerulonephritis. Here, we describe a protocol to detect immune deposits within biological specimens such as mouse kidneys.
View Article and Find Full Text PDFWe identify an intronic deletion in that predisposes to renal injury in high risk populations through a kidney-intrinsic process. Half of all SLE patients develop nephritis, yet the predisposing mechanisms to kidney damage remain poorly understood. There is limited evidence of genetic contribution to specific organ involvement in SLE.
View Article and Find Full Text PDFObjective: To compare the frequency of rare variants in genes of the pathophysiologically relevant endosomal Toll-like receptor (eTLR) pathway and any quantifiable differences in variant rarity, predicted deleteriousness, or molecular proximity in patients with systemic lupus erythematosus (SLE) and healthy controls.
Patients And Methods: 65 genes associated with the eTLR pathway were identified by literature search and pathway analysis. Using next generation sequencing techniques, these were compared in two randomised cohorts of patients with SLE (n = 114 and n = 113) with 197 healthy controls.
IKZF1 (IKAROS) is essential for normal lymphopoiesis in both humans and mice. Previous mouse models have demonstrated the dual role for IKZF1 in both B and T cell development and have indicated differential requirements of each zinc finger. Furthermore, mutations in are known to cause common variable immunodeficiency in patients characterized by a loss of B cells and reduced Ab production.
View Article and Find Full Text PDFAims: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions.
View Article and Find Full Text PDFMLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, Mlkl, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease. It is thought that many common variant gene loci of weak effect act additively to predispose to common autoimmune diseases, while the contribution of rare variants remains unclear. Here we describe that rare coding variants in lupus-risk genes are present in most SLE patients and healthy controls.
View Article and Find Full Text PDFROQUIN is an RNA-binding protein that plays important roles in both the innate and adaptive immune systems. ROQUIN binds to several key immune-relevant messenger RNA (mRNA) targets through its ROQ domain modulating their stability and influencing macrophage function and the peripheral homeostasis of T cells and B cells. More recently, the E3 ubiquitin ligase activity of the ROQUIN RING domain has been shown to be crucial for T-cell-dependent B-cell responses against infection.
View Article and Find Full Text PDFT follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology.
View Article and Find Full Text PDFTight control of T follicular helper (Tfh) cells is required for optimal maturation of the germinal centre (GC) response. The molecular mechanisms controlling Tfh-cell differentiation remain incompletely understood. Here we show that microRNA-146a (miR-146a) is highly expressed in Tfh cells and peak miR-146a expression marks the decline of the Tfh response after immunization.
View Article and Find Full Text PDFRoquin is an RNA-binding protein that prevents autoimmunity and inflammation via repression of bound target mRNAs such as inducible costimulator (Icos). When Roquin is absent or mutated (Roquin(san)), Icos is overexpressed in T cells. Here we show that Roquin enhances Dicer-mediated processing of pre-miR-146a.
View Article and Find Full Text PDFAccumulation of T follicular helper (Tfh) cells and proinflammatory cytokines drive autoantibody-mediated diseases. The RNA-binding protein Roquin-1 (Rc3h1) represses the inducible costimulator ICOS and interferon-γ (IFN-γ) in T cells to prevent Tfh cell accumulation. Unlike Rc3h1(san) mice with a mutation in the ROQ domain of Roquin-1, mice lacking the protein, paradoxically do not display increased Tfh cells.
View Article and Find Full Text PDFRoquin is an E3 ubiquitin ligase with a poorly understood but essential role in preventing T-cell-mediated autoimmune disease and in microRNA-mediated repression of inducible costimulator (Icos) mRNA. Roquin and its mammalian paralogue membrane-associated nucleic acid binding protein (MNAB) define a protein family distinguished by an approximately 200 amino acid domain of unknown function, ROQ, that is highly conserved from mammals to invertebrates and is flanked by a RING-1 zinc finger and a CCCH zinc finger. Here we show that human, Drosophila and Caenorhabditis elegans Roquin and human MNAB localize to the cytoplasm and upon stress are concentrated in stress granules, where stalled mRNA translation complexes are stored.
View Article and Find Full Text PDFImmune responses are normally targeted against microbial pathogens and not self-antigens by mechanisms that are only partly understood. Here we define a newly discovered pathway that prevents autoimmunity by limiting the levels on T lymphocytes of aco-stimulatory receptor, the inducible T-cell co-stimulator(ICOS). In sanroque mice homozygous for an M199R mutation in the ROQ domain of Roquin (also known as Rc3h1), increased Icos expression on T cells causes the accumulation of lymphocytes that is associated with a lupus-like autoimmune syndrome.
View Article and Find Full Text PDFMinichromosome maintenance (MCM) complex replicative helicase complexes play essential roles in DNA replication in all eukaryotes. Using a tandem affinity purification-tagging approach in human cells, we discovered a form of the MCM complex that contains a previously unstudied protein, MCM binding protein (MCM-BP). MCM-BP is conserved in multicellular eukaryotes and shares limited homology with MCM proteins.
View Article and Find Full Text PDFWe have developed a high-throughput system for generating baculoviruses and testing the expression, solubility, and affinity column purification of encoded proteins. We have used this system to generate baculoviruses for and analyze the expression of 337 proteins from three different herpesviruses (HSV-1, EBV, and CMV) and vaccinia virus. Subsets of these proteins were also tested for expression and solubility in E.
View Article and Find Full Text PDFDespite the sequencing of the human and mouse genomes, few genetic mechanisms for protecting against autoimmune disease are currently known. Here we systematically screen the mouse genome for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self. The sanroque mutation acts within mature T cells to cause formation of excessive numbers of follicular helper T cells and germinal centres.
View Article and Find Full Text PDFThe Epstein-Barr nuclear antigen-1 (EBNA1) protein of Epstein-Barr virus is important for the replication, segregation, and transcriptional activation of latent Epstein-Barr virus genomes; has been implicated in host cell immortalization; and avoids proteasomal processing and cell-surface presentation. To gain insight into how EBNA1 fulfills these functions, we have profiled cellular protein interactions with EBNA1 using EBNA1 affinity chromatography and tandem affinity purification (TAP) of EBNA1 complexes from human cells (TAP-tagging). We discovered several new specific cellular protein interactions with EBNA1, including interactions with HAUSP/USP7, NAP1, template-activating factor-I beta/SET, CK2, and PRMT5, all of which play important cell regulatory roles.
View Article and Find Full Text PDF