Background: Local anesthetic toxicity has been well-documented to cause neuronal injury, death, and dysfunction, particularly in a susceptible nerve.
Objective: To determine whether select local anesthetics affect neuron survival and/or functional recovery of an injured nerve.
Methods: This report describes 6 separate experiments that test immediate or delayed application of local anesthetics in 3 nerve injury models.
Many preclinical treatment strategies for stroke have failed when tested in human trials. Although the reasons for these translation failures are multifactorial, one potential concern is the statistical analysis of the preclinical data. One way to rigorously evaluate new therapies is to use an intention-to-treat analysis in preclinical studies.
View Article and Find Full Text PDFA significant number of patients suffering from traumatic brain injury (TBI) have a high blood alcohol level at the time of injury. Furthermore, drinking alcohol in a binge-like pattern is now recognized as a national problem, leading to a greater likelihood of being injured. Our objective was to determine the consequences of a binge paradigm of alcohol intoxication at the time of TBI on long-term functional outcome using a sensitive test of sensorimotor function.
View Article and Find Full Text PDFSmooth muscle cells (SMCs) and collagen scaffolds are widely used in vascular tissue engineering but their interactions in remodeling at the microscale level remained unclear. We characterized microscale morphologic alterations of collagen remodeled by SMCs in six dimensions: three spatial, time, multichannel and multi-position dimensions. In live imaging assays, computer-assisted cell tracking showed locomotion characteristics of SMCs; reflection and fluorescent confocal microscopy and spatial reconstruction images of each time point showed detailed morphologic changes of collagen fibers and spatial collagen-SMC interactions.
View Article and Find Full Text PDFObjectives: Our purpose was to improve the performance of carbon-coated expanded polytetrafluoroethylene vascular grafts by bonding the grafts with silyl-heparin, a biologically active heparin analog, using polyethylene glycol as a cross-linking agent. Material and method Silyl-heparin-bonded carbon-coated expanded polytetrafluoroethylene vascular grafts (Bard Peripheral Vascular, Tempe, Ariz), were evaluated for patency and platelet deposition 2 hours, 7 days, and 30 days after graft implantation in a canine bilateral aortoiliac artery model. Platelet deposition was determined by injection of autologous, (111)Indium-radiolabeled platelets, followed by a 2-hour circulation period prior to graft explantation.
View Article and Find Full Text PDFBackground: Expanded polytetrafluoroethylene (ePTFE) remains the most commonly utilized synthetic graft material for infrainguinal arterial reconstruction. However, patency rates of ePTFE bypass grafts are inferior to those observed with autogenous vein grafts. Modification of the luminal surface of ePTFE grafts such as coating with carbon or heparin, may prevent early graft failures and improve overall patency rates.
View Article and Find Full Text PDFObjectives: R136K is a mutation of fibroblast growth factor-1 (FGF-1) in which arginine replaces lysine at the primary thrombin cleavage site. This may be important in vivo in inducing endothelial cell (EC) migration and coverage of arterial injury sites by allowing R136K to be used in a fibrin glue delivery system, without thrombin-induced degradation, in the absence of heparin. The objectives of this study were to determine whether R136K, with and without heparin, can induce migration of EC and smooth muscle cells (SMC) through fibrin glue, and to compare these results with those of wild-type FGF-1; and to determine the resistance of R136K to thrombin-induced degradation versus FGF-1.
View Article and Find Full Text PDF