Publications by authors named "Vickery L"

Background: The ability to determine athletic performance in varsity athletes using preseason measures has been established. The ability of pre-season performance measures and athlete's exposure to predict the incidence of injuries is unclear. Thus our purpose was to determine the ability of pre-season measures of athletic performance to predict time to injury in varsity athletes.

View Article and Find Full Text PDF

The scaffold protein IscU and molecular chaperones HscA and HscB play central roles in biological assembly of iron-sulfur clusters and maturation of iron-sulfur proteins. However, the structure of IscU-FeS complexes and the molecular mechanism whereby the chaperones facilitate cluster transfer to acceptor proteins are not well understood. We have prepared amino acid substitution mutants of Escherichia coli IscU in which potential ligands to the FeS cluster (Cys-37, Cys-63, His-105, and Cys-106) were individually replaced with alanine.

View Article and Find Full Text PDF

Background: General iron-sulfur cluster biosynthesis proceeds through assembly of a transient cluster on IscU followed by its transfer to a recipient apo-protein. The efficiency of the second step is increased by the presence of HscA and HscB, but the reason behind this is poorly understood. To shed light on the function of HscB, we began a study on the nature of its interaction with IscU.

View Article and Find Full Text PDF

Activation of the mitogen-activated protein kinase (MAPK) pathway plays a major role in neoplastic cell transformation. Using a proteomics approach, we identified alpha tubulin and beta tubulin as proteins that interact with activated MAP/extracellular signal-regulated kinase kinase 1 (MEK1), a central MAPK regulatory kinase. Confocal analysis revealed spatiotemporal control of MEK1-tubulin colocalization that was most prominent in the mitotic spindle apparatus in variant HT1080 human fibrosarcoma cells.

View Article and Find Full Text PDF

Objective: To demonstrate that the novel highly selective matrix metalloproteinase 13 (MMP-13) inhibitor PF152 reduces joint lesions in adult dogs with osteoarthritis (OA) and decreases biomarkers of cartilage degradation.

Methods: The potency and selectivity of PF152 were evaluated in vitro using 16 MMPs, TACE, and ADAMTS-4 and ADAMTS-5, as well as ex vivo in human cartilage explants. In vivo effects were evaluated at 3 concentrations in mature beagles with partial medial meniscectomy.

View Article and Find Full Text PDF

Objective: Statins possess anti-inflammatory properties. This study was undertaken to characterize the mechanism of action of statin drugs on collagenase expression in primary human osteoarthritic cartilage tissue.

Method: Human articular chondrocytes and cartilage explants from osteoarthritic donors were exposed to simvastatin in the presence or absence of interleukin-1 beta (IL-1beta).

View Article and Find Full Text PDF

Insulin-like growth factor binding protein 5 (IGFBP-5) has been proposed to promote cartilage anabolism through insulin-like growth factor (IGF-1) signaling. A proteolytic activity towards IGFBP-5 has been detected in synovial fluids from human osteoarthritic (OA) joints. The purpose of this study was to determine if protease activity towards IGFBP-5 is present in the rat medial meniscal tear (MMT) model of OA and whether inhibition of this activity would alter disease progression.

View Article and Find Full Text PDF

Potent, highly selective and orally-bioavailable MMP-13 inhibitors have been identified based upon a (pyridin-4-yl)-2H-tetrazole scaffold. Co-crystal structure analysis revealed that the inhibitors bind at the S(1)(') active site pocket and are not ligands for the catalytic zinc atom. Compound 29b demonstrated reduction of cartilage degradation biomarker (TIINE) levels associated with cartilage protection in a preclinical rat osteoarthritis model.

View Article and Find Full Text PDF

IscU is a scaffold protein that functions in iron-sulfur cluster assembly and transfer. Its critical importance has been recently underscored by the finding that a single intronic mutation in the human iscu gene is associated with a myopathy resulting from deficient succinate dehydrogenase and aconitase [Mochel, F., Knight, M.

View Article and Find Full Text PDF

The HscA/HscB chaperone/cochaperone system accelerates transfer of iron-sulfur clusters from the FeS-scaffold protein IscU (IscU(2)[2Fe2S], holo-IscU) to acceptor proteins in an ATP-dependent manner. We have employed visible region circular dichroism (CD) measurements to monitor chaperone-catalyzed cluster transfer from holo-IscU to apoferredoxin and to investigate chaperone-induced changes in properties of the IscU(2)[2Fe2S] cluster. HscA-mediated acceleration of [2Fe2S] cluster transfer exhibited an absolute requirement for both HscB and ATP.

View Article and Find Full Text PDF

The interaction between IscU and HscB is critical for successful assembly of iron-sulfur clusters. NMR experiments were performed on HscB to investigate which of its residues might be part of the IscU binding surface. Residual dipolar couplings ( (1) D HN and (1) D CalphaHalpha) indicated that the crystal structure of HscB [Cupp-Vickery, J.

View Article and Find Full Text PDF

Genetic and biochemical studies have led to the identification of several cellular pathways for the biosynthesis of iron-sulfur proteins in different organisms. The most broadly distributed and highly conserved system involves an Hsp70 chaperone and J-protein co-chaperone system that interacts with a scaffold-like protein involved in [FeS]-cluster preassembly. Specialized forms of Hsp70 and their co-chaperones have evolved in bacteria (HscA, HscB) and in certain fungi (Ssq1, Jac1), whereas most eukaryotes employ a multifunctional mitochondrial Hsp70 (mtHsp70) together with a specialized co-chaperone homologous to HscB/Jac1.

View Article and Find Full Text PDF

The Hsp70-class molecular chaperone HscA interacts specifically with a conserved (99)LPPVK(103) motif of the iron-sulfur cluster scaffold protein IscU. We used a cellulose-bound peptide array to perform single-site saturation substitution of peptide residues corresponding to Glu(98)-Ile(104) of IscU to determine positional amino acid requirements for recognition by HscA. Two mutant chaperone forms, HscA(F426A) with a DnaK-like arch structure and HscA(M433V) with a DnaK-like substrate-binding pocket, were also studied.

View Article and Find Full Text PDF

HscA is a constitutively expressed Hsp70 that interacts with the iron-sulfur cluster assembly protein IscU. Crystals of a truncated form of HscA (52 kDa; residues 17-505) grown in the presence of an IscU-recognition peptide, WELPPVKI, have been obtained by hanging-drop vapor diffusion using ammonium sulfate as the precipitant. A complete native X-ray diffraction data set was collected from a single crystal at 100 K to a resolution of 2.

View Article and Find Full Text PDF

1 Chronic cold exposure of rats (7 days in a cold room at 4 degrees C) attenuated the sympathetic nerve stimulation (NS)-induced overflow of noradrenaline (NE) (measured by high-performance liquid chromatography, coupled to electrochemical detection) appearing in the perfusate/superfusate of the perfused mesenteric arterial bed as well as the increase in the perfusion pressure. 2 The same type of cold exposure resulted in an increase in tyrosine hydroxylase (TH) gene expression measured in the superior cervical ganglion and NE content measured in the mesenteric artery obtained from cold-exposed rats. 3 Addition of sodium nitroprusside, a nitric oxide (NO) donor, to the buffer perfusing the mesenteric arterial bed obtained from rats maintained at room temperature also resulted in an attenuation of the NS-induced overflow of NE and increase in perfusion pressure.

View Article and Find Full Text PDF

Hsp70-class molecular chaperones interact with diverse polypeptide substrates, but there is limited information on the structures of different Hsp70-peptide complexes. We have used a site-directed fluorescence labeling and quenching strategy to investigate the orientation of different peptides bound to DnaK from Escherichia coli. DnaK was selectively labeled on opposite sides of the substrate-binding domain (SBD) with the fluorescent probe bimane, and the ability of peptides containing N- or C-terminal tryptophan residues to quench bimane fluorescence was measured.

View Article and Find Full Text PDF

Chronic cold stress of rats (4 degrees C; 1-3 weeks) induced a marked increase in gene expression (adrenal medulla; superior cervical ganglia), tissue content (mesenteric arterial bed) and nerve stimulation-induced overflow of NPY-immunoreactivity (NPYir) from the perfused mesenteric arterial bed. In contrast increased NPY neurotransmission was offset by an apparent decrease in the evoked overflow of norepinephrine (NE) due to a presumed deactivation of NE by nitric oxide (NO), despite increased sympathetic nerve activity. The net effect of these offsetting system was no change in basal or the evoked increase in perfusion pressure (sympathetic tone).

View Article and Find Full Text PDF

IscU/Isu and IscA/Isa (and related NifU and SufA proteins) have been proposed to serve as molecular scaffolds for preassembly of [FeS] clusters to be used in the biogenesis of iron-sulfur proteins. In vitro studies demonstrating transfer of preformed scaffold-[FeS] complexes to apoprotein acceptors have provided experimental support for this hypothesis, but investigations to date have yielded only single-cluster transfer events. We describe an in vitro assay system that allows for real-time monitoring of [FeS] cluster formation using circular dichroism spectroscopy and use this to investigate de novo [FeS] cluster formation and transfer from Escherichia coli IscU and IscA to apo-ferredoxin.

View Article and Find Full Text PDF

The ATPase activity of HscA, a specialized hsp70 molecular chaperone from Escherichia coli, is regulated by the iron-sulfur cluster assembly protein IscU and the J-type co-chaperone HscB. IscU behaves as a substrate for HscA, and HscB enhances the binding of IscU to HscA. To better understand the mechanism by which HscB and IscU regulate HscA, we examined binding of HscB to the different conformational states of HscA and the effects of HscB and IscU on the kinetics of the individual steps of the HscA ATPase reaction cycle.

View Article and Find Full Text PDF

HscA, a specialized bacterial Hsp70-class molecular chaperone, interacts with the iron-sulfur cluster assembly protein IscU by recognizing a conserved LPPVK sequence motif. We report the crystal structure of the substrate-binding domain of HscA (SBD, residues 389-616) from Escherichia coli bound to an IscU-derived peptide, ELPPVKIHC. The crystals belong to the space group I222 and contain a single molecule in the asymmetric unit.

View Article and Find Full Text PDF

HscA, a specialized bacterial hsp70-class chaperone, interacts with the iron-sulfur cluster assembly protein IscU by recognizing a conserved LPPVK sequence motif at positions 99-103. We have used a site-directed fluorescence labeling and quenching strategy to determine whether HscA binds to IscU in a preferred orientation. HscA was selectively labeled on opposite sides of the substrate binding domain with the fluorescent probe bimane, and the ability of LPPVK-containing peptides having tryptophan at the N or C terminus to quench bimane fluorescence was measured.

View Article and Find Full Text PDF

IscA, an 11 kDa member of the hesB family of proteins, binds iron and [2Fe-2S] clusters, and participates in the biosynthesis of iron-sulfur proteins. We report the crystal structure of the apo-protein form of IscA from Escherichia coli to a resolution of 2.3A.

View Article and Find Full Text PDF

IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo.

View Article and Find Full Text PDF

Iron-sulfur proteins participate in a wide range of biochemical processes, including many that are central to mitochondrial electron transfer and energy metabolism. Mutations in two such proteins, frataxin and ABCB7, cause Friedreich ataxia and X-linked sideroblastic anemia with ataxia, respectively, rendering other participants in this pathway functional candidates for hereditary ataxia syndromes. Recently frataxin was shown to have an identical phylogenetic distribution with two genes and was most likely specifically involved in the same sub-process in iron-sulfur cluster assembly as one gene, designated hscB, in bacteria.

View Article and Find Full Text PDF

Hsc66 (HscA) and Hsc20 (HscB) from Escherichia coli comprise a specialized chaperone system that selectively binds the iron-sulfur cluster template protein IscU. Hsc66 interacts with peptides corresponding to a discrete region of IscU including residues 99-103 (LPPVK), and a peptide containing residues 98-106 stimulates Hsc66 ATPase activity in a manner similar to IscU. To determine the relative contributions of individual residues in the LPPVK motif to Hsc66 binding and regulation, we have carried out an alanine mutagenesis scan of this motif in the Glu98-Cys106 peptide and the IscU protein.

View Article and Find Full Text PDF