Purpose: To demonstrate magnetization transfer (MT) effects with low specific absorption rate (SAR) on ultra-low-field (ULF) MRI.
Methods: MT imaging was implemented by using sinc-modulated RF pulse train (SPT) modules to provide bilateral off-resonance irradiation. They were incorporated into 3D gradient echo (GRE) and fast spin echo (FSE) protocols on a shielding-free 0.
We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding.
View Article and Find Full Text PDFDespite a half-century of advancements, global magnetic resonance imaging (MRI) accessibility remains limited and uneven, hindering its full potential in health care. Initially, MRI development focused on low fields around 0.05 Tesla, but progress halted after the introduction of the 1.
View Article and Find Full Text PDFIn recent years, there has been an intensive development of portable ultralow-field magnetic resonance imaging (MRI) for low-cost, shielding-free, and point-of-care applications. However, its quality is poor and scan time is long. We propose a fast acquisition and deep learning reconstruction framework to accelerate brain MRI at 0.
View Article and Find Full Text PDFPurpose: To develop a truly calibrationless reconstruction method that derives An Eigenvalue Approach to Autocalibrating Parallel MRI (ESPIRiT) maps from uniformly-undersampled multi-channel MR data by deep learning.
Methods: ESPIRiT, one commonly used parallel imaging reconstruction technique, forms the images from undersampled MR k-space data using ESPIRiT maps that effectively represents coil sensitivity information. Accurate ESPIRiT map estimation requires quality coil sensitivity calibration or autocalibration data.
Purpose: To develop a robust parallel imaging reconstruction method using spatial nulling maps (SNMs).
Methods: Parallel reconstruction using null operations (PRUNO) is a k-space reconstruction method where a k-space nulling system is derived using null-subspace bases of the calibration matrix. ESPIRiT reconstruction extends the PRUNO subspace concept by exploiting the linear relationship between signal-subspace bases and spatial coil sensitivity characteristics, yielding a hybrid-domain approach.
Purpose: Recent development of ultra-low-field (ULF) MRI presents opportunities for low-power, shielding-free, and portable clinical applications at a fraction of the cost. However, its performance remains limited by poor image quality. Here, a computational approach is formulated to advance ULF MR brain imaging through deep learning of large-scale publicly available 3T brain data.
View Article and Find Full Text PDFPurpose: To develop a joint denoising method that effectively exploits natural information redundancy in MR DWIs via low-rank patch matrix approximation.
Methods: A denoising method is introduced to jointly reduce noise in DWI dataset by exploiting nonlocal self-similarity as well as local anatomical/structural similarity within multiple 2D DWIs acquired with the same anatomical geometry but different diffusion directions. Specifically, for each small 3D reference patch sliding within 2D DWI, nonlocal but similar patches are searched by matching image contents within entire DWI dataset and then structured into a patch matrix.