Here we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the CBGT system during a variety of tasks, allowing for the formation of testable predictions about animal behavior and neural activity. The framework has been designed around the principle of flexibility, such that many experimental parameters in a decision making paradigm can be easily defined and modified.
View Article and Find Full Text PDFReactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe).
View Article and Find Full Text PDFReactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe).
View Article and Find Full Text PDFFor decades, the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here, we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity and functional role of the GPe in behaviour.
View Article and Find Full Text PDFFor decades the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity, and functional role of the GPe in behavior.
View Article and Find Full Text PDFHere we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the CBGT system during a variety of tasks, allowing for the formation of testable predictions about animal behavior and neural activity. The framework has been designed around the principle of flexibility, such that many experimental parameters in a decision making paradigm can be easily defined and modified.
View Article and Find Full Text PDFThe phenomenon of slow passage through a Hopf bifurcation is ubiquitous in multiple-timescale dynamical systems, where a slowly varying quantity replacing a static parameter induces the solutions of the resulting slow-fast system to feel the effect of the Hopf bifurcation with a delay. This phenomenon is well understood in the context of smooth slow-fast dynamical systems; in the present work, we study it for the first time in piecewise linear (PWL) slow-fast systems. This special class of systems is indeed known to reproduce all features of their smooth counterpart while being more amenable to quantitative analysis and offering some level of simplification, in particular, through the existence of canonical (linear) slow manifolds.
View Article and Find Full Text PDFIn situations featuring uncertainty about action-reward contingencies, mammals can flexibly adopt strategies for decision-making that are tuned in response to environmental changes. Although the cortico-basal ganglia thalamic (CBGT) network has been identified as contributing to the decision-making process, it features a complex synaptic architecture, comprised of multiple feed-forward, reciprocal, and feedback pathways, that complicate efforts to elucidate the roles of specific CBGT populations in the process by which evidence is accumulated and influences behavior. In this paper we apply a strategic sampling approach, based on Latin hypercube sampling, to explore how variations in CBGT network properties, including subpopulation firing rates and synaptic weights, map to variability of parameters in a normative drift diffusion model (DDM), representing algorithmic aspects of information processing during decision-making.
View Article and Find Full Text PDFIn this article, the standard theoretical model accounting for a double barrier quantum well resonant tunneling diode (RTD) connected to a direct current source of voltage is simplified by representing its current-voltage characteristic with an analytically approachable, anti-symmetric N-shaped function. The time and variables involved are also transformed to reduce the number of parameters in the model. Responses observed in previous, more physically accurate studies are reproduced, including slow-fast dynamics, excitability, and bistability, relevant for spiking signal processing.
View Article and Find Full Text PDFThe question of how cortico-basal ganglia-thalamic (CBGT) pathways use dopaminergic feedback signals to modify future decisions has challenged computational neuroscientists for decades. Reviewing the literature on computational representations of dopaminergic corticostriatal plasticity, we show how the field is converging on a normative, synaptic-level learning algorithm that elegantly captures both neurophysiological properties of CBGT circuits and behavioral dynamics during reinforcement learning. Unfortunately, the computational studies that have led to this normative algorithmic model have all relied on simplified circuits that use abstracted action-selection rules.
View Article and Find Full Text PDFCortico-basal-ganglia-thalamic (CBGT) networks are critical for adaptive decision-making, yet how changes to circuit-level properties impact cognitive algorithms remains unclear. Here we explore how dopaminergic plasticity at corticostriatal synapses alters competition between striatal pathways, impacting the evidence accumulation process during decision-making. Spike-timing dependent plasticity simulations showed that dopaminergic feedback based on rewards modified the ratio of direct and indirect corticostriatal weights within opposing action channels.
View Article and Find Full Text PDFSubthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using data and applied to recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace.
View Article and Find Full Text PDFWe study the influence of subthreshold activity in the estimation of synaptic conductances. It is known that differences between actual conductances and the estimated ones using linear regression methods can be huge in spiking regimes, so caution has been taken to remove spiking activity from experimental data before proceeding to linear estimation. However, not much attention has been paid to the influence of ionic currents active in the non-spiking regime where such linear methods are still profusely used.
View Article and Find Full Text PDF