Publications by authors named "Vicenzi E"

The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from CF and non-CF individuals, including various CF transmembrane conductance regulator (CFTR) mutations, respond to infection with SARS-CoV-2 variants and SARS-CoV.

View Article and Find Full Text PDF

Introduction: SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments.

Methods: We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • Gain-of-function mutations in STING lead to STING-associated vasculopathy with onset in infancy (SAVI), which is marked by systemic inflammation, skin issues, and lung disease.
  • A new STING variant (F269S) was discovered in a SAVI patient; this variant causes abnormal activation of immune pathways and an increase in circulating naïve T cells in the patient's bone marrow.
  • The STING F269S variant enhances protein signaling and protects against viral infections but disrupts immune function, contributing to inflammation and damage in endothelial cells, thereby linking immune and lung diseases.
View Article and Find Full Text PDF

A suite of natural, synthetic, and mixed synthetic-natural woven fabrics, along with nonwoven filtration layers from a surgical mask and an N95 respirator, was examined using visible light microscopy, scanning electron microscopy, and micro-X-ray computed tomography (µXCT) to determine the fiber diameter distribution, fabric thickness, and the volume of solid space of the fabrics. Nonwoven materials exhibit a positively skewed distribution of fiber diameters with a mean value of ≈3 μm, whereas woven fabrics exhibit a normal distribution of diameters with mean values roughly five times larger (>15 μm). The mean thickness of the N95 filtration material is 1093 μm and is greater than that of the woven fabrics that span from 420 to 650 μm.

View Article and Find Full Text PDF

The demystification of how 19th-century novelly designed materials became significant elements of modern technological, economic, and cultural life requires a complete understanding of the material dimensions of historical artifacts. The objects frequently described as the earliest manufactured plastic products-the billiard balls made by John Wesley Hyatt and his associates from the late 1860s-are examined closely for the first time and are found to be more complex and functionally more successful than has been described. Modern analytical techniques such as optical microscopy, scanning electron microscope-energy dispersive X-ray spectroscopy, X-ray fluorescence, micro-Fourier transformed infrared, and handheld/micro-Raman spectroscopies were used to reveal the complex composition of the Smithsonian Institution's "original" 1868 celluloid billiard ball.

View Article and Find Full Text PDF

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection during pregnancy can result in severe birth defects, such as microcephaly, as well as a range of other related health complications. Heparin, a clinical-grade anticoagulant, is shown to protect neural progenitor cells from death following ZIKV infection. Although heparin can be safely used during pregnancy, it retains off-target anticoagulant effects if directly employed against ZIKV infection.

View Article and Find Full Text PDF

FAM46C is a multiple myeloma (MM) tumor suppressor whose function is only starting to be elucidated. We recently showed that in MM cells FAM46C triggers apoptosis by inhibiting autophagy and altering intracellular trafficking and protein secretion. To date, both a physiological characterization of FAM46C role and an assessment of FAM46C-induced phenotypes outside of MM are lacking.

View Article and Find Full Text PDF

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop.

View Article and Find Full Text PDF

SARS-CoV-2 is a novel coronavirus that emerged in China at the end of 2019 causing the severe disease known as coronavirus disease 2019 (COVID-19). SARS-CoV-2, as to the previously highly pathogenic human coronaviruses named SARS-CoV, the etiological agent of severe acute respiratory syndrome (SARS), has a zoonotic origin, although SARS-CoV-2 precise chain of animal-to-human transmission remains undefined. Unlike the 2002-2003 pandemic caused by SARS-CoV whose extinction from the human population was achieved in eight months, SARS-CoV-2 has been spreading globally in an immunologically naïve population in an unprecedented manner.

View Article and Find Full Text PDF

Upon infection, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is predicted to interact with diverse cellular functions, such as the nonsense-mediated decay (NMD) pathway, as suggested by the identification of the core NMD factor upframeshift-1 (UPF1) in the SARS-CoV-2 interactome, and the retrograde transport from the Golgi to the endoplasmic reticulum (ER) through the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where coronavirus assembly occurs. Here, we investigated the expression and localization of the neuroblastoma-amplified sequence (NBAS) protein, a UPF1 partner for the NMD at the ER, participating also in retrograde transport, and of its functional partners, at early time points after SARS-CoV-2 infection of the human lung epithelial cell line Calu3. We found a significant decrease of DExH-Box Helicase 34 (, suppressor with morphogenetic effect on genitalia 5 (, and expression at 6 h post-infection, followed by a significant increase of these genes and also and at 9 h post-infection.

View Article and Find Full Text PDF

Zika virus (ZIKV) is an arbovirus member of the family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1.

View Article and Find Full Text PDF

In the summer of 1981, a new deadly disease suddenly emerged targeting young men having sexwith men (MSM); three years later, a new virus, an exogenous human retrovirus, later named humanimmunodeficiency virus (HIV), was demonstrated to be the causative agent of the new disease, theAcquired Immuno-Deficiency Syndrome (AIDS), affecting, in addition to MSM, also intravenousdrug users, hemophiliacs, heterosexual individuals and children born to infected mothers. AIDSremained a dead sentence for >95% infected individuals until 1996 when the first combinationantiretroviral therapy (cART) was shown to be effective saving the lives of countless people. Sincethen, cART has become extremely powerful and simpler to adhere (now down to one or two pillsa day).

View Article and Find Full Text PDF

In addition to CD4 T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4 T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo.

View Article and Find Full Text PDF

Two years since the outbreak of the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic, there remain few clinically effective drugs to complement vaccines. One is the anticoagulant, heparin, which in 2004 was found able to inhibit invasion of SARS-CoV (CoV-1) and which has been employed during the current pandemic to prevent thromboembolic complications and moderate potentially damaging inflammation. Heparin has also been shown experimentally to inhibit SARS-CoV-2 attachment and infection in susceptible cells.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells that reside in the fetal and adult mammalian brain, which can self-renew and differentiate into neurons and supporting cells. Intrinsic and extrinsic cues, from cells in the local niche and from distant sites, stringently orchestrates the self-renewal and differentiation competence of NSCs. Ample evidence supports the important role of NSCs in neuroplasticity, aging, disease, and repair of the nervous system.

View Article and Find Full Text PDF

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively.

View Article and Find Full Text PDF

In addition to CD4 T cells, tissue-resident macrophages are target of productive HIV-1 infection. Unlike CD4 T lymphocytes they are characterized by a substantial resistance to the cytopathic effects triggered by viral infection. This feature, in addition to their homeostatic self-renewal capacity, strongly support the hypothesis that macrophages could serve as an additional reservoir of persistently infected cells in individuals receiving combination antiretroviral therapy (cART).

View Article and Find Full Text PDF

A new standards-based scanning electron microscopy with the energy-dispersive X-ray spectrometry (SEM-EDS) quantification method was used to analyze the thin-film coating of an 18th century French textile decorated with metal threads in variable pressure conditions. This analytical technique can allow for nondestructive quantitative characterization of the near surface of cultural heritage objects small enough to be placed in an SEM chamber that may contain corrosion products, without applying a conductive coating. A multivoltage analysis consisting of measurements taken at a series of electron beam energies was obtained and input into a film thickness and composition (FTC) computational model to characterize a layered Au on Ag reference material, in addition to a historic metal thread.

View Article and Find Full Text PDF

Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has caused a significant number of fatalities and worldwide disruption. To identify drugs to repurpose to treat SARS-CoV-2 infections, we established a screen to measure the dimerization of angiotensin-converting enzyme 2 (ACE2), the primary receptor for the virus. This screen identified fenofibric acid, the active metabolite of fenofibrate.

View Article and Find Full Text PDF

The United States Centers for Disease Control and Prevention and World Health Organization recognize that wearing cloth face coverings can slow the transmission of respiratory diseases via source control. Adding a partial layer of material with a high filtration efficiency (FE, ..

View Article and Find Full Text PDF

Under high humidity conditions that mimic respiration, the filtration efficiency (FE) of hydrophilic fabrics increases when challenged with hygroscopic nanoparticles, for example, respiratory droplets containing SARS-CoV-2. The FE and differential pressure (Δ) of natural, synthetic, and blended fabrics were measured as a function of relative humidity (RH) for particles with mobility diameters between 50 and 825 nm. Fabrics were equilibrated at 99% RH, mimicking conditions experienced when worn as a face mask.

View Article and Find Full Text PDF