This work deals with wave absorption in reciprocal asymmetric scattering problem by addressing the acoustic problem of compact absorbers for perfect unidirectional absorption, flush mounted to the walls of wide ducts. These absorbers are composed of several side-by-side resonators that are usually of different geometry and thus detuned to yield an asymmetric acoustic response. A simple lumped-element model analysis is performed to link the dependence of the optimal resonators surface impedance, resonance frequency, and losses to the duct cross-sectional area and resonator spacing.
View Article and Find Full Text PDFBy using a structured tungsten-polyurethane composite that is impedance matched to water while simultaneously having a much slower longitudinal sound speed, we have theoretically designed and experimentally realized an underwater acoustic absorber exhibiting high absorption from 4 to 20 kHz, measured in a 5.6 m by 3.6 m water pool with the time-domain approach.
View Article and Find Full Text PDFWe study analytically and numerically envelope solitons (bright and gap solitons) in a one-dimensional, nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in the continuum approximation, leads to a nonlinear, dispersive, and dissipative wave equation. Applying the multiple scales perturbation method, we derive an effective lossy nonlinear Schrödinger equation and obtain analytical expressions for bright and gap solitons.
View Article and Find Full Text PDFIn this paper we outline our main findings about the differences between the use of the Bioheat Equation and the Hyperbolic Bioheat Equation in theoretical models for Radiofrequency (RF) ablation. At the moment, we have been working on the analytical approach to solve both equations, but more recently, we have considered numerical models based on the Finite Element Method (FEM). As a first step to use FEM, we conducted a comparative study between the temperature profiles obtained from the analytical solutions and those obtained from FEM.
View Article and Find Full Text PDF