Publications by authors named "Vicent Ribas-Ripoll"

Article Synopsis
  • - The study focuses on understanding how different disease patterns are related to human lifespan and health span, utilizing data from over 482,000 individuals in Catalonia who died after age 50.
  • - Key findings reveal that as lifespan increases, the onset of diseases is delayed, the prevalence of individuals living without diseases is lower around life expectancy, and long-lived women are less prone to multisystem diseases.
  • - The research indicates that the relationship between health span and lifespan varies depending on the specific organ systems affected, and there are notable differences in how these factors play out between men and women.
View Article and Find Full Text PDF

Artificial intelligence (AI) generative models driven by the integration of AI and natural language processing technologies, such as OpenAI's chatbot generative pre-trained transformer large language model (LLM), are receiving much public attention and have the potential to transform personalized medicine. Dialysis patients are highly dependent on technology and their treatment generates a challenging large volume of data that has to be analyzed for knowledge extraction. We argue that, by integrating the data acquired from hemodialysis treatments with the powerful conversational capabilities of LLMs, nephrologists could personalize treatments adapted to patients' lifestyles and preferences.

View Article and Find Full Text PDF

Computer-assisted diagnosis (CAD) algorithms have shown its usefulness for the identification of pulmonary nodules in chest x-rays, but its capability to diagnose lung cancer (LC) is unknown. A CAD algorithm for the identification of pulmonary nodules was created and used on a retrospective cohort of patients with x-rays performed in 2008 and not examined by a radiologist when obtained. X-rays were sorted according to the probability of pulmonary nodule, read by a radiologist and the evolution for the following three years was assessed.

View Article and Find Full Text PDF

Currently, there is no therapy targeting septic cardiomyopathy (SC), a key contributor to organ dysfunction in sepsis. In this study, we used a machine learning (ML) pipeline to explore transcriptomic, proteomic, and metabolomic data from patients with septic shock, and prospectively collected measurements of high-sensitive cardiac troponin and echocardiography. The purposes of the study were to suggest an exploratory methodology to identify and characterise the multiOMICs profile of (i) myocardial injury in patients with septic shock, and of (ii) cardiac dysfunction in patients with myocardial injury.

View Article and Find Full Text PDF

Background And Objective: The most common tool for population-wide COVID-19 identification is the Reverse Transcription-Polymerase Chain Reaction test that detects the presence of the virus in the throat (or sputum) in swab samples. This test has a sensitivity between 59% and 71%. However, this test does not provide precise information regarding the extension of the pulmonary infection.

View Article and Find Full Text PDF

Background And Objective: An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy.

View Article and Find Full Text PDF

Biomarkers of aging are urgently needed to identify individuals at high risk of developing age-associated disease or disability. Growing evidence from population-based studies points to whole-body magnetic resonance imaging's (MRI) enormous potential for quantifying subclinical disease burden and for assessing changes that occur with aging in all organ systems. The Aging Imageomics Study aims to identify biomarkers of human aging by analyzing imaging, biopsychosocial, cardiovascular, metabolomic, lipidomic, and microbiome variables.

View Article and Find Full Text PDF

Background: Modern clinical environments are laden with technology devices continuously gathering physiological data from patients. This is especially true in critical care environments, where life-saving decisions may have to be made on the basis of signals from monitoring devices. Hemodynamic monitoring is essential in dialysis, surgery, and in critically ill patients.

View Article and Find Full Text PDF

Background: During the last decade, the interest to apply machine learning algorithms to genomic data has increased in many bioinformatics applications. Analyzing this type of data entails difficulties for managing high-dimensional data, class imbalance for knowledge extraction, identifying important features and classifying individuals. In this study, we propose a general framework to tackle these challenges with different machine learning algorithms and techniques.

View Article and Find Full Text PDF

Circulatory shock is a life-threatening disease that accounts for around one-third of all admissions to intensive care units (ICU). It requires immediate treatment, which is why the development of tools for planning therapeutic interventions is required to deal with shock in the critical care environment. In this study, the ShockOmics European project original database is used to extract attributes capable of predicting mortality due to shock in the ICU.

View Article and Find Full Text PDF

A four compartment model of the cardiovascular system is developed. To allow for easy interpretation and to minimise the number of parameters, an effort was made to keep the model as simple as possible. Using a standard method (Matlab function ) to calculate the parameter values led to unacceptable run times or non-convergence.

View Article and Find Full Text PDF

Sepsis is the response of the host to an infection that produces lesions in its own organs and tissues. Despite the great advances in modern medicine, including vaccines, antibiotics and intensive care, it is still the primary cause of death due to infection. Sepsis may result in shock, multi-organic failure and death unless there is a rapid identification of the infection and timely administration of treatment.

View Article and Find Full Text PDF

Objective: This paper presents an algorithm to assess the risk of death in patients with sepsis. Sepsis is a common clinical syndrome in the intensive care unit (ICU) that can lead to severe sepsis, a severe state of septic shock or multi-organ failure. The proposed algorithm may be implemented as part of a clinical decision support system that can be used in combination with the scores deployed in the ICU to improve the accuracy, sensitivity and specificity of mortality prediction for patients with sepsis.

View Article and Find Full Text PDF