Publications by authors named "Vic De Roo"

Viscosin is a membrane-permeabilizing, cyclic lipopeptide (CLiP) produced by Pseudomonas species. Here, we have studied four synthetic analogs (L1W, V4W, L5W, and L7W), each with one leucine (Leu; L) or valine residue exchanged for tryptophan (Trp; W) by means of time-resolved fluorescence spectroscopy of Trp. To this end, we recorded the average fluorescence lifetime, rotational correlation time and limiting anisotropy, dipolar relaxation time and limiting extent of relaxation, rate constant of acrylamide quenching, effect of HO-DO exchange, and time-resolved half-width of the spectrum in the absence and presence of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) liposomes.

View Article and Find Full Text PDF

We previously described NMR based fingerprint matching with peptide backbone resonances as a fast and reliable structural dereplication approach for Pseudomonas cyclic lipodepsipeptides (CLiPs). In combination with total synthesis of a small library of configurational CLiP congeners this also allows unambiguous determination of stereochemistry, facilitating structure-activity relationship studies and enabling three-dimensional structure determination. However, the on-resin macrocycle formation in the synthetic workflow brings considerable burden and limits universal applicability.

View Article and Find Full Text PDF

Several established procedures are now available to prepare zinc blende CdSe nanoplatelets. While these protocols allow for detailed control over both thickness and lateral dimensions, the chemistry behind their formation is yet to be unraveled. In this work, we discuss the influence of the solvent on the synthesis of nanoplatelets.

View Article and Find Full Text PDF

In lipopeptides, the D-configuration of amino acids is generated by dedicated, dual-function epimerization/condensation (E/C) domains. The increasing attention to stereochemistry in lipopeptide structure elucidation efforts has revealed multiple examples where epimerization does not occur, even though an E/C-type domain is present. While the origin of the idle epimerization in those E/C-domains remains elusive, epimerization activity has so far shown a binary profile: it is either 'on' (active) or 'off' (inactive).

View Article and Find Full Text PDF

A major source of pseudomonad-specialized metabolites is the nonribosomal peptide synthetases (NRPSs) assembling siderophores and lipopeptides. Cyclic lipopeptides (CLPs) of the Mycin and Peptin families are frequently associated with, but not restricted to, phytopathogenic species. We conducted an analysis of the NRPSs encoded by lipopeptide biosynthetic gene clusters in nonpathogenic Pseudomonas genomes, covering 13 chemically diversified families.

View Article and Find Full Text PDF

Tolaasin II is an amphiphilic, membrane-active, cyclic lipopeptide produced by and is responsible for brown blotch disease in mushroom. To better understand the mode of action and membrane selectivity of tolaasin II and related lipopeptides, its permeabilizing effect on liposomes of different membrane thickness was characterized. An equi-activity analysis served to distinguish between the effects of membrane partitioning and the intrinsic activity of the membrane-bound peptide.

View Article and Find Full Text PDF

Cyclic lipopeptides (CLiPs) are secondary metabolites secreted by a range of bacterial phyla. CLiPs from Pseudomonas in particular, display diverse structural variations in terms of the number of amino acid residues, macrocycle size, amino acid identity, and stereochemistry (e.g.

View Article and Find Full Text PDF

Cyclic lipopeptides (CLiPs) are secondary metabolites produced by a variety of bacteria. These compounds show a broad range of antimicrobial activities; therefore, they are studied for their potential applications in agriculture and medicine. It is generally assumed that the primary target of the CLiPs is the cellular membrane, where they can permeabilize the lipid bilayer.

View Article and Find Full Text PDF