Publications by authors named "Vibhor Singh"

Cavity-electromechanical systems are extensively used for sensing and controlling the vibrations of mechanical resonators down to their quantum limit. The nonlinear radiation-pressure interaction in these systems could result in an unstable response of the mechanical resonator showing features such as frequency-combs, period-doubling bifurcations and chaos. However, due to weak light-matter interaction, typically these effects appear at very high driving strengths.

View Article and Find Full Text PDF

With artificially engineered systems, it is now possible to realize the coherent interaction rate, which can become comparable to the mode frequencies, a regime known as ultrastrong coupling (USC). We experimentally realize a cavity-electromechanical device using a superconducting waveguide cavity and a mechanical resonator. In the presence of a strong pump, the mechanical-polaritons splitting can nearly reach 81% of the mechanical frequency, overwhelming all the dissipation rates.

View Article and Find Full Text PDF

As the magnetic field penetrates the surface of a superconductor, it results in the formation of flux vortices. It has been predicted that the flux vortices will have a charged vortex core and create a dipolelike electric field. Such a charge trapping in vortices is particularly enhanced in high- superconductors (HTS).

View Article and Find Full Text PDF

In cavity optomechanics, light is used to control mechanical motion. A central goal of the field is achieving single-photon strong coupling, which would enable the creation of quantum superposition states of motion. Reaching this limit requires significant improvements in optomechanical coupling and cavity coherence.

View Article and Find Full Text PDF

In physical systems, decoherence can arise from both dissipative and dephasing processes. In mechanical resonators, the driven frequency response measures a combination of both, whereas time-domain techniques such as ringdown measurements can separate the two. Here we report the first observation of the mechanical ringdown of a carbon nanotube mechanical resonator.

View Article and Find Full Text PDF

Superlattice in graphene generates extra Dirac points in the band structure and their number depends on the superlattice potential strength. Here, we have created a lateral superlattice in a graphene device with a tunable barrier height using a combination of two gates. In this Letter, we demonstrate the use of lateral superlattice to modify the band structure of graphene leading to the emergence of new Dirac cones.

View Article and Find Full Text PDF

The elastic response of suspended NbSe(3) nanowires is studied across the charge density wave phase transition. The nanoscale dimensions of the resonator lead to a large resonant frequency (~10-100 MHz), bringing the excited phonon frequency in close proximity of the plasmon mode of the electronic condensate-a parameter window not accessible in bulk systems. The interaction between the phonon and plasmon modes strongly modifies the elastic properties at high frequencies.

View Article and Find Full Text PDF

We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K.

View Article and Find Full Text PDF