Publications by authors named "Vibhas Aravamuthan"

The SARS-CoV-2 main protease (M) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo and inhibitor-bound SARS-CoV/CoV-2 M crystal structures, are underway in many laboratories. However, little is known about the dynamic enzyme mechanism, which is needed to inform both assay development and structure-based inhibitor design.

View Article and Find Full Text PDF

Current early and preclinical drug discovery are rooted in decades-old empirical principles describing structure-free energy and structure-function relationships under equilibrium conditions that frequently break down under in vivo conditions. Improved prediction of efficacy and toxicity depends on a paradigm shift to in vivo-relevant principles describing the true nonequilibrium/nonlinear dynamic (NLD) nature of cellular systems. Here, we outline a holistic, in vivo-relevant first principles theory ('Biodynamics'), in which cellular function/dysfunction, and pharmaco-/toxicodynamic effects are considered as emergent behaviors of multimolecular systems powered by covalent and noncovalent free energy sources.

View Article and Find Full Text PDF

A statistical-mechanical framework for estimation of solvation entropies and enthalpies is proposed, which is based on the analysis of water as a mixture of correlated water oxygens and water hydrogens. Entropic contributions of increasing order are cast in terms of a Mutual Information Expansion that is evaluated to pairwise interactions. In turn, the enthalpy is computed directly from a distance-based hydrogen bonding energy algorithm.

View Article and Find Full Text PDF

Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced.

View Article and Find Full Text PDF