Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation.
View Article and Find Full Text PDFEvery niche in the biosphere is touched by the seemingly endless capacity of microbes to transform the world around them by adapting swiftly and flexibly to the environmental changes, likewise the gastrointestinal tract is no exception. The ability to cope with rapid changes in external osmolarity is an important aspect of gut microbes for their survival and colonization. Identification of these survival mechanisms is a pivotal step towards understanding genomic suitability of a symbiont for successful human gut colonization.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis.
View Article and Find Full Text PDF