Angew Chem Int Ed Engl
December 2024
Fluorocarbon oils are uniquely suited for many biomedical applications due to their inert, bioorthogonal properties. In order to interface fluorocarbon oils with biological systems, non-ionic fluorosurfactants are necessary. However, there is a paucity of non-ionic fluorosurfactants with low interfacial tension (IFT) to stabilize fluorocarbon phases in aqueous environments (such as oil-in-water emulsions).
View Article and Find Full Text PDFThe proliferation of wireless and other telecommunications equipment brought about by technological advances in the communication industry has substantially increased the radiofrequency radiation levels in the environment. The emphasis is, therefore, placed on investigating the potential impacts of radiofrequency radiation on biota. In this work, the impact of 2850 MHz electromagnetic field radiation (EMF-r) on early development, photosynthetic pigments, and the metabolic profile of two Brassica oleracea L.
View Article and Find Full Text PDFInt J Mol Sci
August 2023
Inter-cellular communication is mediated by a sum of biochemical, biophysical, and bioelectrical signals. This might occur not only between cells belonging to the same tissue and/or animal species but also between cells that are, from an evolutionary point of view, far away. The possibility that bioelectrical communication takes place between bacteria and nerve cells has opened exciting perspectives in the study of the gut microbiota-brain axis.
View Article and Find Full Text PDFThe biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna.
View Article and Find Full Text PDFNumerous studies report different types of responses following exposure of plants to high frequency electromagnetic fields (HF-EMF). While this phenomenon is related to tissue heating in animals, the situation is much less straightforward in plants where metabolic changes seem to occur without tissue temperature increase. We have set up an exposure system allowing reliable measurements of tissue heating (using a reflectometric probe and thermal imaging) after a long exposure (30 min) to an electromagnetic field of 2.
View Article and Find Full Text PDFThis report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively.
View Article and Find Full Text PDFThis report summarizes the effects of anthropogenic radiofrequency electromagnetic fields with frequencies above 100 MHz on flora and fauna presented at an international workshop held on 5-7 November 2019 in Munich, Germany. Anthropogenic radiofrequency electromagnetic fields at these frequencies are commonplace; e.g.
View Article and Find Full Text PDFMost vegetative axes remain quiescent as dormant axillary buds until metabolic and hormonal signals, driven by environmental changes, trigger bud outgrowth. While the resumption of growth activity is well documented, the establishment and maintenance of quiescence is comparatively poorly understood, despite its major importance in the adaptation of plants to the seasonal cycle or in the establishment of their shape. Here, using the rosebush Rosa hybrida 'Radrazz' as a plant model, we highlighted that the quiescent state was the consequence of an internal and active energy control of buds, under the influence of hormonal factors previously identified in the bud outgrowth process.
View Article and Find Full Text PDFRosebush (Rosa "Radrazz") plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid-Glutathione (AsA-GSH)-dependent pathways and the continuous decrease in H2O2 production.
View Article and Find Full Text PDFSome marine plankton called dinoflagellates emit light in response to the movement of surrounding water, resulting in a phenomenon called milky seas or sea sparkle. The underlying concept, a shear-stress induced permeabilisation of biocatalytic reaction compartments, is transferred to polymer-based nanoreactors. Amphiphilic block copolymers that carry nucleobases in their hydrophobic block are self-assembled into polymersomes.
View Article and Find Full Text PDFThe bioorthogonal nature of perfluorocarbons provides a unique platform for introducing dynamic nano- and microdroplets into cells and organisms. To monitor the localization and deformation of the droplets, fluorous soluble fluorophores that are compatible with standard fluorescent protein markers and applicable to cells, tissues, and small organisms are necessary. Here, we introduce fluorous cyanine dyes that represent the most red-shifted fluorous soluble fluorophores to date.
View Article and Find Full Text PDFBackground And Aims: Branching is an important mechanism of plant shape establishment and the direct consequence of axillary bud outgrowth. Recently, hydrogen peroxide (H2O2) metabolism, known to be involved in plant growth and development, has been proposed to contribute to axillary bud outgrowth. However, the involvement of H2O2 in this process remains unclear.
View Article and Find Full Text PDFAn important area in precision agriculture is related to the efficient use of chemicals applied onto fields. Efforts have been made to diminish their use, aiming at cost reduction and fewer chemical residues in the final agricultural products. The use of unmanned aerial vehicles (UAVs) presents itself as an attractive and cheap alternative for spraying pesticides and fertilizers compared to conventional mass spraying performed by ordinary manned aircraft.
View Article and Find Full Text PDFWorldwide urbanisation and use of mobile and wireless technologies (5G, Internet of Things) is leading to the proliferation of anthropogenic electromagnetic radiation (EMR) and campaigning voices continue to call for the risk to human health and wildlife to be recognised. Pollinators provide many benefits to nature and humankind, but face multiple anthropogenic threats. Here, we assess whether artificial light at night (ALAN) and anthropogenic radiofrequency electromagnetic radiation (AREMR), such as used in wireless technologies (4G, 5G) or emitted from power lines, represent an additional and growing threat to pollinators.
View Article and Find Full Text PDFCapsules often prolong the shelf-life of active ingredients, such as many types of drugs, food additives, or cosmetic substances, because they delay oxidation of these substances or prevent their reactions with molecules contained in the surrounding. If capsules are appropriately designed, they can offer an additional benefit: they allow close control over the timing and location of the release of active ingredients. To take advantage of these features, capsules must possess shells whose thickness and composition are well-defined.
View Article and Find Full Text PDFEmulsion drops are frequently used as vessels, for example, to conduct biochemical reactions in small volumes or to perform screening assays at high throughputs while consuming minimal sample volumes. These applications typically require drops that do not allow exchange of reagents such that no cross-contamination occurs. Unfortunately, in many cases, reagents are exchanged between emulsion drops even if they have a low solubility in the surrounding phase, resulting in cross-contaminations.
View Article and Find Full Text PDFDouble emulsions are often used as containers to perform high throughput screening assays and as templates for capsules. These applications require double emulsions to be mechanically stable such that they do not coalesce during processing and storage. A possibility to increase their stability is to reduce the thickness of their shells to sufficiently low values that lubrication effects hinder coalescence.
View Article and Find Full Text PDFNitrogen is required for optimal plant growth, especially in young organs such as secondary axes (axes II) after axillary bud outgrowth. Several studies have shown an increase of nitrogen concentration in xylem sap concomitantly with bud outgrowth, but the relation between nitrogen, sugars and plant hormones in axis II still remains unclear. We investigated in Rosa hybrida the involvement of nitrogen nutrition in axis II elongation in relation with sugars and cytokinins using N-labeled nitrate and sugars, amino acids and cytokinin quantifications.
View Article and Find Full Text PDFBud outgrowth is controlled by environmental and endogenous factors. Through the use of the photosynthesis inhibitor norflurazon and of masking experiments, evidence is given here that light acts mainly as a morphogenic signal in the triggering of bud outgrowth and that initial steps in the light signaling pathway involve cytokinins (CKs). Indeed, in rose (Rosa hybrida), inhibition of bud outgrowth by darkness is suppressed solely by the application of CKs.
View Article and Find Full Text PDFHigh frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale.
View Article and Find Full Text PDFIt is now accepted that plants perceive high-frequency electromagnetic field (HF-EMF). We wondered if the HF-EMF signal is integrated further in planta as a chain of reactions leading to a modification of plant growth. We exposed whole small ligneous plants (rose bush) whose growth could be studied for several weeks.
View Article and Find Full Text PDFApical control is defined as the inhibition of basal axillary bud outgrowth by an upper actively growing axillary axis, whose regulation is poorly understood yet differs markedly from the better-known apical dominance. We studied the regulation of apical control by environmental factors in decapitated Rosa hybrida in order to remove the apical hormonal influence and nutrient sink. In this plant model, all the buds along the main axis have a similar morphology and are able to burst in vitro.
View Article and Find Full Text PDFGranulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult.
View Article and Find Full Text PDF