Publications by authors named "Viacheslav Nikolaev"

Sulfonylureas (SUs) are a class of antidiabetic drugs widely used in the management of diabetes mellitus type 2. They promote insulin secretion by inhibiting the ATP-sensitive potassium channel in pancreatic β-cells. Recently, the exchange protein directly activated by cAMP (Epac) was identified as a new class of target proteins of SUs that might contribute to their antidiabetic effect, through the activation of the Ras-like guanosine triphosphatase Rap1, which has been controversially discussed.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of Na+-activated Slack potassium channels in regulating neuronal and cardiovascular activity, particularly during ischemia and reperfusion (I/R) injury.
  • Researchers found that Slack channels are essential for K+ currents in cardiomyocytes and help prevent excessive Ca2+ accumulation, which can lead to cell death under low oxygen conditions.
  • The findings emphasize Slack's critical role in maintaining ion balance in heart cells, suggesting that its activity may protect against cardiac damage during I/R injuries.
View Article and Find Full Text PDF

Aims: Gene therapy with cardiac phosphodiesterases (PDEs), such as phosphodiesterase 4B (PDE4B), has recently been described to effectively prevent heart failure (HF) in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here, we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload-induced HF in mice by acting on and restoring altered cAMP compartmentation in distinct subcellular microdomains.

View Article and Find Full Text PDF

White and brown adipocytes are central mediators of lipid metabolism and thermogenesis, respectively. Their function is tightly regulated by all three β-adrenergic receptor (β-AR) subtypes which are coupled to the production of the second messenger 3',5'-cyclic adenosine monophosphate (cAMP). While known for decades in other cell types, compartmentation of adipocyte β-AR/cAMP signaling by spatial organization of the pathway and by cAMP degrading phosphodiesterases (PDEs) as well as its role in the regulation of lipolysis is only beginning to emerge.

View Article and Find Full Text PDF

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity.

View Article and Find Full Text PDF

The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure.

View Article and Find Full Text PDF

T-cell activation is a pivotal process of the adaptive immune response with 3',5'-cyclic adenosine monophosphate (cAMP) as a key regulator of T-cell activation and function. It governs crucial control over T-cell differentiation and production of pro-inflammatory cytokines, such as IFN-γ. Intriguingly, levels of intracellular cAMP differ between regulatory (Treg) and conventional T-cells (Tcon).

View Article and Find Full Text PDF

The molecular mechanisms by which lymphatic vessels induce cell contact inhibition are not understood. Here, we identify the cGMP-dependent phosphodiesterase 2A (PDE2A) as a selective regulator of lymphatic but not of blood endothelial contact inhibition. Conditional deletion of Pde2a in mouse embryos reveals severe lymphatic dysplasia, whereas blood vessel architecture remains unaltered.

View Article and Find Full Text PDF

Aims: Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon β-adrenergic receptor (β-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake.

Methods And Results: To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor.

View Article and Find Full Text PDF

In mouse cardiomyocytes, the expression of two subfamilies of the calcium/calmodulin-regulated cyclic nucleotide phosphodiesterase 1 (PDE1)-PDE1A and PDE1C-has been reported. PDE1C was found to be the major subfamily in the human heart. It is a dual substrate PDE and can hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP).

View Article and Find Full Text PDF

Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation.

View Article and Find Full Text PDF

Aims: Cardiomyopathies (CMPs) are a heterogeneous group of diseases that are defined by structural and functional abnormalities of the cardiac muscle. Dilated cardiomyopathy (DCM), the most common CMP, is defined by left ventricular dilation and impaired contractility and represents a common cause of heart failure. Different phenotypes result from various underlying genetic and acquired causes with variable effects on disease development and progression, prognosis, and response to medical treatment.

View Article and Find Full Text PDF

Background: βAR (beta-1 adrenergic receptor) and βAR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac β-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes.

View Article and Find Full Text PDF

The renin-angiotensin-aldosterone system (RAAS) is one of the key players in the regulation of blood volume and blood pressure. Dysfunction of this system is connected with cardiovascular and renal diseases. Regulation of RAAS is under the control of multiple intracellular mechanisms.

View Article and Find Full Text PDF

Cyclic nucleotide phosphodiesterases 2A (PDE2A) and PDE3A play an important role in the regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-to-cAMP crosstalk. Each of these PDEs has up to three distinct isoforms. However, their specific contributions to cAMP dynamics are difficult to explore because it has been challenging to generate isoform-specific knock-out mice or cells using conventional methods.

View Article and Find Full Text PDF

Lipolysis of stored triglycerides is stimulated via β-adrenergic receptor (β-AR)/3',5'-cyclic adenosine monophosphate (cAMP) signaling and inhibited via phosphodiesterases (PDEs). In type 2 diabetes, a dysregulation in the storage/lipolysis of triglycerides leads to lipotoxicity. Here, we hypothesize that white adipocytes regulate their lipolytic responses via the formation of subcellular cAMP microdomains.

View Article and Find Full Text PDF

Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.

View Article and Find Full Text PDF

Aims: Atrial fibrillation (AF) is associated with altered cAMP/PKA signaling and an AF-promoting reduction of L-type Ca2+-current (ICa,L), the mechanisms of which are poorly understood. Cyclic-nucleotide phosphodiesterases (PDEs) degrade cAMP and regulate PKA-dependent phosphorylation of key calcium-handling proteins, including the ICa,L-carrying Cav1.2α1C subunit.

View Article and Find Full Text PDF

The rate of calcium cycling and calcium transient amplitude are critical determinants for the efficient contraction and relaxation of the heart. Calcium-handling proteins in the cardiac myocyte are altered in heart failure, and restoring the proper function of those proteins is an effective potential therapeutic strategy. The calcium-handling proteins or their regulators are phosphorylated by a cAMP-dependent kinase (PKA), and thereby their activity is regulated.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCR) regulate 3',5'-cyclic adenosine monophosphate (cAMP) levels in T cells. cAMP as ubiquitous second messenger is crucial for adequate physiology of T cells by mediating effector T cell (Teff) function as well as regulatory T cell (Treg)-mediated immunosuppression. Several GPCRs have been identified to be crucial for Teff and Treg function.

View Article and Find Full Text PDF

Background: The sympathetic nervous system plays an integral role in cardiac physiology. Nerve fibers innervating the left ventricle are amenable to transvenous catheter stimulation along the coronary sinus (CS).

Objectives: The aim of the present study was to modulate left ventricular control by selective intracardiac sympathetic denervation.

View Article and Find Full Text PDF

Carvedilol is among the most effective β-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of β-adrenoceptors, arrestin-biased signalling via β-adrenoceptors is a molecular mechanism proposed to explain the survival benefits.

View Article and Find Full Text PDF