Background And Objective: Survival analysis plays an essential role in the medical field for optimal treatment decision-making. Recently, survival analysis based on the deep learning (DL) approach has been proposed and is demonstrating promising results. However, developing an ideal prediction model requires integrating large datasets across multiple institutions, which poses challenges concerning medical data privacy.
View Article and Find Full Text PDFSegmentation of liver tumors from Computerized Tomography (CT) images remains a challenge due to the natural variation in tumor shape and structure as well as the noise in CT images. A key assumption is that the performance of liver tumor segmentation depends on the characteristics of multiple features extracted from multiple filters. In this paper, we design an enhanced approach based on a two-class (liver, tumor) convolutional neural network that discriminates tumor as well as liver from CT images.
View Article and Find Full Text PDF