Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties. However, the current use of ZnO NPs is hindered by their potential cytotoxicity concerns, which are likely attributed to the generation of reactive oxygen species (ROS) and the dissolution of particles to ionic zinc. To reduce the cytotoxicity of ZnO NPs, transitional metals are introduced into ZnO lattices to modulate the ROS production and NP dissolution.
View Article and Find Full Text PDFInnovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant and .
View Article and Find Full Text PDFChronic and recurring wounds pose a significant challenge in modern healthcare, leading to substantial morbidity. These wounds allow pathogens to colonize, potentially resulting in local and systemic infections. Current interventions need to be revised and become increasingly less reliable due to the emergence of antibiotic resistance.
View Article and Find Full Text PDFChronic wounds often result in multiple infections with various kinds of bacteria and uncontrolled wound exudate, resulting in several healthcare issues. Advanced medicated nanofibres prepared by electrospinning have gained much attention for their topical application on infected chronic wounds. The objective of this work is to enhance the critical variables of ciprofloxacin-loaded polycaprolactone-silk sericin (PCL/SS-PVA-CIP) nanofibre production via the process of electrospinning.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Immunoglobulin G (IgG) comprises a significant portion of the protein corona that forms on biomaterial surfaces and holds a pivotal role in modulating host immune responses. To shed light on the important relationship between biomaterial surface functionality, IgG adsorption, and innate immune responses, we prepared, using plasma deposition, four surface coatings with specific chemistries, wettability, and charge. We found that nitrogen-containing coatings such as these deposited from allylamine (AM) and 2-methyl-2-oxazoline (POX) cause the greatest IgG unfolding, while hydrophilic acrylic acid (AC) surfaces allowed for the retention of the protein structure.
View Article and Find Full Text PDFWith the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals.
View Article and Find Full Text PDFThe urgency to address skeletal abnormalities and diseases through innovative approaches has led to a significant interdisciplinary convergence of engineering, 3D printing, and design in developing individualised bioceramic bioscaffolds. This review explores into the recent advancements and future trajectory of non-antibiotic antibacterial bioceramics in bone tissue engineering, an importance given the escalating challenges of orthopaedic infections, antibiotic resistance, and emergent pathogens. Initially, the review provides an in-depth exploration of the complex interactions among bacteria, immune cells, and bioceramics in clinical contexts, highlighting the multifaceted nature of infection dynamics, including protein adsorption, immunological responses, bacterial adherence, and endotoxin release.
View Article and Find Full Text PDFDeveloping novel antibacterial strategies has become an urgent requisite to overcome the increasing pervasiveness of antimicrobial-resistant bacteria and the advent of biofilms. Aggregation-induced emission-based photosensitizers (AIE PSs) are promising candidates due to their unique photodynamic and photothermal properties. Bioengineering structure-inherent AIE PSs for developing thin film coatings is still an unexplored area in the field of nanoscience.
View Article and Find Full Text PDFIn the quest to curtail the spread of healthcare-associated infections, this work showcases the fabrication of a cutting-edge antibacterial textile coating armoured with aggregation-induced emission photosensitisers (AIE PS) to prevent bacterial colonisation on textiles. The adopted methodology includes a multi-step process using plasma polymerisation and subsequent integration of AIE PS on their surface. The antibacterial effectiveness of the coating was tested against and after light irradiation for 1 h.
View Article and Find Full Text PDFNanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide.
View Article and Find Full Text PDFAntimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates.
View Article and Find Full Text PDFThe threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery.
View Article and Find Full Text PDFWith the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, the development of titanium-based materials that can impart antibacterial function has demonstrated promising results, where gallium has exhibited superior antimicrobial action.
View Article and Find Full Text PDFNaturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process.
View Article and Find Full Text PDFBacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that Staphylococcus aureus, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin.
View Article and Find Full Text PDFThe challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve.
View Article and Find Full Text PDFBone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions.
View Article and Find Full Text PDFThe proliferation of drug resistance in microbial pathogens poses a significant threat to human health. Hence, treatment measures are essential to surmount this growing problem. In this context, liquid metal nanoparticles are promising.
View Article and Find Full Text PDFShell wastes pose environmental and financial burdens to the shellfish industry. Utilizing these undervalued shells for commercial chitin production could minimize their adverse impacts while maximizing economic value. Shell chitin conventionally produced through harsh chemical processes is environmentally unfriendly and infeasible for recovering compatible proteins and minerals for value-added products.
View Article and Find Full Text PDFHydrogels have been widely used to entrap biomolecules for various biocatalytic reactions. However, solute diffusion in these matrices to initiate such reactions can be a very slow process. Conventional mixing remains a challenge as it can cause irreversible distortion or fragmentation of the hydrogel itself.
View Article and Find Full Text PDFMetals tend to supercool-that is, they freeze at temperatures below their melting points. In general, supercooling is less favorable when liquids are in contact with nucleation sites such as rough surfaces. Interestingly, bulk gallium (Ga) can significantly supercool, even when it is in contact with heterogeneous surfaces that could provide nucleation sites.
View Article and Find Full Text PDFIn this study, a eutectic gallium-indium (EGaIn) alloy and graphene nanoplatelets (GnPs) were employed as reinforcements for a comonomer vinyl ester (cVE) resin at different weight fractions up to 2% via a direct polymerization process. First, the effect of EGaIn on the curing kinetics of cVE was evaluated. The thermal and mechanical properties, and the fracture toughness of two types of cVE composites consisting of EGaIn and GnPs were then studied.
View Article and Find Full Text PDFHypothesis: Titanium and its alloys are commonly used implant materials. Once inserted into the body, the interface of the biomaterials is the most likely site for the development of implant-associated infections. Imparting the titanium substrate with high-aspect-ratio nanostructures, which can be uniformly achieved using hydrothermal etching, enables a mechanical contact-killing (mechanoresponsive) mechanism of bacterial and fungal cells.
View Article and Find Full Text PDFis a yeast-like fungus that can cause the life-threatening disease cryptococcal meningitis. Numerous reports have shown increased resistance of this fungus against antifungal treatments, such as fluconazole (Fluc), contributing to an 80% global mortality rate. This work presents a novel approach to improve the delivery of the antifungal agent Fluc and increase the drug's targetability and availability at the infection site.
View Article and Find Full Text PDFHydroxyapatite (HAp)-coated metallic implants are known for their excellent bioactivity and osteoconductivity. However, infections associated with the microstructure of the HAp coatings may lead to implant failures as well as increased morbidity and mortality. This work addresses the concerns about infections by developing novel composite coatings of HAp and gallium liquid metal (GaLM) using atmospheric plasma spray (APS) as the coating technique.
View Article and Find Full Text PDF