Uveal melanoma (UM) is the most common primary intraocular malignancy in the adult eye. Despite the aggressive local management of primary UM, the development of metastases is common with no effective treatment options for metastatic disease. Genetic analysis of UM samples reveals the presence of mutually exclusive activating mutations in the Gq alpha subunits GNAQ and GNA11.
View Article and Find Full Text PDFPurpose: Targeting RAF for antitumor therapy in RAS-mutant tumors holds promise. Herein, we describe in detail novel properties of the type II RAF inhibitor, LXH254.
Experimental Design: LXH254 was profiled in biochemical, , and assays, including examining the activities of the drug in a large panel of cancer-derived cell lines and a comprehensive set of models.
J Med Chem
March 2020
Direct pharmacological inhibition of RAS has remained elusive, and efforts to target CRAF have been challenging due to the complex nature of RAF signaling, downstream of activated RAS, and the poor overall kinase selectivity of putative RAF inhibitors. Herein, we describe (LXH254, Aversa, R.; et al.
View Article and Find Full Text PDFResistance to the RAF inhibitor vemurafenib arises commonly in melanomas driven by the activated BRAF oncogene. Here, we report antitumor properties of RAF709, a novel ATP-competitive kinase inhibitor with high potency and selectivity against RAF kinases. RAF709 exhibited a mode of RAF inhibition distinct from RAF monomer inhibitors such as vemurafenib, showing equal activity against both RAF monomers and dimers.
View Article and Find Full Text PDFRAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify.
View Article and Find Full Text PDFThe non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway.
View Article and Find Full Text PDFMore than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe).
View Article and Find Full Text PDFThe tumor suppressor p53 is a key regulator of apoptosis and functions upstream in the apoptotic cascade by both indirectly and directly regulating Bcl-2 family proteins. In cells expressing wild-type (WT) p53, the HDM2 protein binds to p53 and blocks its activity. Inhibition of HDM2:p53 interaction activates p53 and causes apoptosis or cell-cycle arrest.
View Article and Find Full Text PDFResistance to cancer therapies presents a significant clinical challenge. Recent studies have revealed intratumoral heterogeneity as a source of therapeutic resistance. However, it is unclear whether resistance is driven predominantly by pre-existing or de novo alterations, in part because of the resolution limits of next-generation sequencing.
View Article and Find Full Text PDFStrategies to target angiogenesis include inhibition of the vessel-stabilizing properties of vascular pericytes. Pericyte depletion in early-stage non-hypoxic tumors suppressed nascent angiogenesis, tumor growth, and lung metastasis. In contrast, pericyte depletion in advanced-stage hypoxic tumors with pre-established vasculature resulted in enhanced intra-tumoral hypoxia, decreased tumor growth, and increased lung metastasis.
View Article and Find Full Text PDFTankyrases (TNKS) play roles in Wnt signaling, telomere homeostasis, and mitosis, offering attractive targets for anticancer treatment. Using unbiased combination screening in a large panel of cancer cell lines, we have identified a strong synergy between TNKS and MEK inhibitors (MEKi) in KRAS-mutant cancer cells. Our study uncovers a novel function of TNKS in the relief of a feedback loop induced by MEK inhibition on FGFR2 signaling pathway.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of the alternative NF-κB pathway.
View Article and Find Full Text PDFEpigenetic dysregulation is an emerging hallmark of cancers. We developed a high-information-content mass spectrometry approach to profile global histone modifications in human cancers. When applied to 115 lines from the Cancer Cell Line Encyclopedia, this approach identified distinct molecular chromatin signatures.
View Article and Find Full Text PDFUnlabelled: Castration-resistant prostate cancer (CRPC) is the most aggressive, incurable form of prostate cancer. MDV3100 (enzalutamide), an antagonist of the androgen receptor (AR), was approved for clinical use in men with metastatic CRPC. Although this compound showed clinical efficacy, many initial responders later developed resistance.
View Article and Find Full Text PDFMyofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation.
View Article and Find Full Text PDFThe functional role of pericytes in cancer progression remains unknown. Clinical studies suggest that low numbers of vessel-associated pericytes correlated with a drop in overall survival of patients with invasive breast cancer. Using genetic mouse models or pharmacological inhibitors, pericyte depletion suppressed tumor growth but enhanced metastasis.
View Article and Find Full Text PDFIncreased numbers of S100A4(+) cells are associated with poor prognosis in patients who have cancer. Although the metastatic capabilities of S100A4(+) cancer cells have been examined, the functional role of S100A4(+) stromal cells in metastasis is largely unknown. To study the contribution of S100A4(+) stromal cells in metastasis, we used transgenic mice that express viral thymidine kinase under control of the S100A4 promoter to specifically ablate S100A4(+) stromal cells.
View Article and Find Full Text PDFAngiogenesis, the process of new blood vessel formation, is regulated on both genetic and molecular levels. Pro- and anti-angiogenic stimuli maintain the angiogenic balance, and the tipping of that balance toward pro-angiogenic activity is critical for tumor growth and survival. Endogenous inhibitors of angiogenesis, many of which are fragments from large extracellular matrix proteins, counter the effect of growth factors and keep angiogenesis in check.
View Article and Find Full Text PDFTumstatin is an angiogenesis inhibitor that binds to alphavbeta3 integrin and suppresses tumor growth. Previous deletion mutagenesis studies identified a 25-aa fragment of tumstatin (tumstatin peptide) with in vitro antiangiogenic activity. Here, we demonstrate that systemic administration of this tumstatin peptide inhibits tumor growth and angiogenesis.
View Article and Find Full Text PDFJunctional adhesion molecules (JAMs) that are expressed in endothelial and epithelial cells and function in tight junction assembly, also perform important roles in testis where the closely-related JAM-A, JAM-B, and JAM-C are found. Disruption of murine Jam-B and Jam-C has varying effects on sperm development and function; however, deletion of Jam-A has not yet been studied. Here we show for the first time that in addition to expression in the Sertoli-Sertoli tight junctions in the seminiferous tubules, the approximately 32 kDa murine JAM-A is present in elongated spermatids and in the plasma membrane of the head and flagellum of sperm.
View Article and Find Full Text PDFInt J Biochem Cell Biol
April 2007
Junctional adhesion molecule-A (JAM-A, JAM-1, F11R) is an Ig domain containing transmembrane protein that has been proposed to function in diverse processes including platelet activation and adhesion, leukocyte transmigration, angiogenesis, epithelial cell shape and endothelial cell migration although its function in vivo is less well established. In the mouse eye, JAM-A protein expression is first detected at 12.5 dpc in the blood vessels of the tunica vasculosa, while it is first detected in both the corneal epithelium and lens between 13.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2006
Objective: We have previously shown that JAM-A regulates fibroblast growth factor-2 (FGF-2)-induced endothelial cell morphology, proliferation, and migration. Whether JAM-A is involved in FGF-2-induced angiogenesis in vivo is not known. We used JAM-A null mice to conclusively determine the role of JAM-A in FGF-2-induced neovascularization.
View Article and Find Full Text PDFCell adhesion molecules of the immunoglobulin superfamily play an important role in embryonic development. We have shown recently that JAM-A, a member of this family expressed at endothelial and epithelial tight junctions, is involved in platelet activation, leukocyte transmigration, and angiogenesis. Here, we determine the expression pattern of the JAM-A gene during embryogenesis using transgenic mice expressing lacZ under the control of the endogenous JAM-A promoter.
View Article and Find Full Text PDF