This paper presents a real-time wearable system designed to assist Parkinson's disease patients experiencing freezing of gait episodes. The system utilizes advanced machine learning models, including convolutional and recurrent neural networks, enhanced with past sample data preprocessing to achieve high accuracy, efficiency, and robustness. By continuously monitoring gait patterns, the system provides timely interventions, improving mobility and reducing the impact of freezing episodes.
View Article and Find Full Text PDFBackground: Transcutaneous electrostimulation of the auricular branch of the vagal nerve (taVNS) has the propensity to reach diffuse neuromodulatory networks, which are dysfunctional in Parkinson's disease (PD). Previous studies support the use of taVNS as an add-on treatment for gait in PD.
Objectives: We assessed the effect of taVNS at 25 Hz (taVNS25), taVNS at 100 Hz (taVNS100), and sham earlobe stimulation (sVNS) on levodopa responsive (arm swing velocity, arm range of motion, stride length, gait speed) and non-responsive gait characteristics (arm range of motion asymmetry, anticipatory postural adjustment [APA] duration, APA first step duration, APA first step range of motion), and turns (first turn duration, double 360° turn duration, steps per turn) in advanced PD.
Neurophysiological evidence that transcutaneous auricular vagal nerve stimulation (taVNS) affects neuronal signalling at the cortical level is sparse. We used transcranial magnetic stimulation to assess the effect of taVNS on the excitability of intracortical GABAergic and cholinergic circuits. In this within-subject, double-blind study on 30 healthy participants, we used TMS paradigms to assess the effect of a single session of taVNS at 100 Hz and sham earlobe VNS (sVNS) on short-interval intracortical inhibition (SICI) curve and short-latency afferent inhibition (SAI).
View Article and Find Full Text PDFHuman gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life.
View Article and Find Full Text PDFKeppen-Lubinsky syndrome is caused by pathogenic variants in KCNJ6, which encodes the inwardly rectifying channel subfamily J6. The four confirmed cases reported to date were characterized by severe intellectual disability, global developmental delay, feeding difficulties, and dysmorphic features. All but one of the cases also had a severe form of lipodystrophy, resulting in tightly adherent facial skin and appearance of premature aging.
View Article and Find Full Text PDFBrain health is one of the cornerstones of a long and full life. Active care for brain health and reduction of lifestyle-related risks for brain disorders may be a key strategy in tackling the growing prevalence of mental and neurological illnesses. Public knowledge, perception, and preventive behavior need to be considered in the planning of effective strategies for brain health promotion.
View Article and Find Full Text PDF