The glycine nitrate procedure (GNP) is a method that proved to be the easiest and most effective method for controlling the composition and morphology during the synthesis of CoRMoO (R = Ho, Yb, Gd). This method of the combustion process achieves control of stoichiometry, homogeneity, and purity. Metal nitrates and glycine were mixed in the appropriate stoichiometric ratios to produce CoRMoO (R = Ho, Yb, Gd).
View Article and Find Full Text PDFSynthesis of Eu(3+)- and Er(3+)/Yb(3+)-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite.
View Article and Find Full Text PDFPowders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties.
View Article and Find Full Text PDF