ACS Appl Mater Interfaces
December 2014
Nanocomposite pressure-sensitive adhesives (PSAs) composed of polyurethane (PU)/(meth)acrylates reinforced with MoS2 nanoplatelets were prepared by blending aqueous dispersions. MoS2 crystals were exfoliated by sonication in water in the presence of poly(vinylpyrrolidone) (PVP, molecular weight of 10,000 g mol(-1)) to prepare an aqueous dispersion. Waterborne colloidal polymer particles (latex) were synthesized by miniemulsion photopolymerization in a continuous tubular reactor.
View Article and Find Full Text PDFMolecular structure plays a crucial role in determining the final properties of pressure-sensitive adhesives. Here, we demonstrate that the molecular structure of polyurethane/(meth)acrylic hybrids synthesized by miniemulsion photopolymerization changes during storage of the dispersion at room temperature because of the spontaneous formation of nanogels by the assembly of polymer chains within the polymer particles. Analysis of the nanogel structure by asymmetric-flow field-flow fractionation allows identification of the molecular structure that provides the unusual combination of high tack adhesion and excellent shear resistance at high temperature [maximum value of the shear-adhesion failure temperature (SAFT) test, >210 °C].
View Article and Find Full Text PDF