Publications by authors named "Vescovi A"

Article Synopsis
  • The axillofemoral bypass is primarily used to address specific aortoiliac blockages, though it can also be done in reverse for occlusive arterial disease.
  • The study reports a successful hybrid treatment for a para-anastomotic aortic arch pseudoaneurysm involving bilateral femoroaxillary bypasses, thromboexclusion of all supra-aortic trunks, and the use of an endograft to cover the aortic arch.
View Article and Find Full Text PDF

Smith-Magenis syndrome (SMS) is a complex neurodevelopmental disorder with a birth incidence of 1:25,000. SMS is caused by haploinsufficiency of the retinoic acid-induced retinoic acid1 (RAI1) gene, determined by an interstitial deletion of ∼ 3.7 Mb (17p11.

View Article and Find Full Text PDF
Article Synopsis
  • Pre-clinical trials show that transplanted human neural stem cells (hNSCs) have neuroprotective effects after brain ischemia, but the mechanisms behind this are still not fully understood.
  • The study explores whether hNSCs use tunneling nanotubes (TNTs) to communicate and transfer functional mitochondria, highlighting their role in protecting neurons from damage.
  • Findings reveal that hNSCs can form nestin-positive TNTs for mitochondrial transfer, which helps rescue damaged neurons from apoptosis and restore their function when in direct contact with hNSCs.
View Article and Find Full Text PDF

One of the genetic mutations most associated with the onset of amyotrophic lateral sclerosis, both in sporadic and familial cases, is the expansion of the C9orf72 gene. The presence of more than 30 repeats (GGGGCC) correlates with uncertain ALS symptomatology. Here we collected a dermal biopsy from a subject carrying 36 hexanucleotide repeats and reprogrammed it into an induced pluripotent stem cell line.

View Article and Find Full Text PDF

Introduction: Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published.

Areas Covered: This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS.

View Article and Find Full Text PDF

Hypomyelinating leukodystrophies (HLD) are a group of heterogeneous genetic disorders characterized by a deficit in myelin deposition during brain development. Specifically, 4H-Leukodystrophy is a recessive disease due to biallelic mutations in the POLR3A gene, which encodes one of the subunits forming the catalytic core of RNA polymerase III (PolIII). The disease also presents non-neurological signs such as hypodontia and hypogonadotropic hypogonadism.

View Article and Find Full Text PDF

Genetic expansions of the hexanucleotide repeats (GGGGCC) in the C9orf72 gene appear in approximately 40% of patients with familial ALS and 7% of patients with sporadic ALS in the European population, making this mutation one of the most prevalent genetic mutations in ALS. Here, we generated a human induced pluripotent stem cell (hiPSC) line from the dermal fibroblasts of a patient carrying a 56-repeat expansion in an ALS disease-causing allele of C9orf72. These iPSCs showed stable amplification in vitro with normal karyotype and high expression of pluripotent markers and differentiated spontaneously in vivo into three germ layers.

View Article and Find Full Text PDF

We report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen.

View Article and Find Full Text PDF

Tunneling nanotubes (TNTs) are long F-actin-positive plasma membrane bridges connecting distant cells, allowing the intercellular transfer of cellular cargoes, and are found to be involved in glioblastoma (GBM) intercellular crosstalk. Glial fibrillary acid protein (GFAP) is a key intermediate filament protein of glial cells involved in cytoskeleton remodeling and linked to GBM progression. Whether GFAP plays a role in TNT structure and function in GBM is unknown.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM.

View Article and Find Full Text PDF

Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants.

View Article and Find Full Text PDF

Background: This Phase 1 study evaluates the intra- and peritumoral administration by convection enhanced delivery (CED) of human recombinant Bone Morphogenetic Protein 4 (hrBMP4) - an inhibitory regulator of cancer stem cells (CSCs) - in recurrent glioblastoma.

Methods: In a 3 + 3 dose escalation design, over four to six days, fifteen recurrent glioblastoma patients received, by CED, one of five doses of hrBMP4 ranging from 0·5 to 18 mg. Patients were followed by periodic physical, neurological, blood testing, magnetic resonance imaging (MRI) and quality of life evaluations.

View Article and Find Full Text PDF

Circadian rhythm impairment may play a role in Parkinson's disease (PD) pathophysiology. Recent literature associated circadian rhythm features to the risk of developing Parkinson and to its progression through stages. The association between the chronotype and the phenotype should be verified on a clinical and biological point of view.

View Article and Find Full Text PDF

The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer's disease, and others.

View Article and Find Full Text PDF
Article Synopsis
  • Familial Hypocalciuric Hypercalcemia (FHH1) is a rare genetic disease where people have high levels of calcium in their blood but normal levels of a hormone called PTH, and they don't excrete much calcium in their urine.
  • It is caused by changes (mutations) in a gene called CaSR that helps the body sense and manage calcium levels.
  • Researchers created special stem cells from a patient with this condition using a safe virus technique to study the disease better.
View Article and Find Full Text PDF

Objective: stroke etiology is ischemia in 85%, and in circa 25% of these, the source is the extracranial carotid. Recurrence is frequent and usually more severe. Carotid revascularization prevents new ischemic strokes.

View Article and Find Full Text PDF

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown.

View Article and Find Full Text PDF

Translation of cell therapies into clinical practice requires the adoption of robust production protocols in order to optimize and standardize the manufacture and cryopreservation of cells, in compliance with good manufacturing practice regulations. Between 2012 and 2020, we conducted two phase I clinical trials (EudraCT 2009-014484-39, EudraCT 2015-004855-37) on amyotrophic lateral sclerosis secondary progressive multiple sclerosis patients, respectively, treating them with human neural stem cells. Our production process of a hNSC-based medicinal product is the first to use brain tissue samples extracted from fetuses that died in spontaneous abortion or miscarriage.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) are membrane-enclosed particles released systemically by all cells, including tumours. Tumour EVs have been shown to manipulate their local environments as well as distal targets to sustain the tumour in a variety of tumours, including glioblastoma (GBM). We have previously demonstrated the dual role of the glial water channel aquaporin-4 (AQP4) protein in glioma progression or suppression depending on its aggregation state.

View Article and Find Full Text PDF

Introduction: In central nervous system neurodegenerative disorders, stem cell-based therapies should be considered as a promising therapeutic approach. The safe use of human Neural Stem Cells (hNSCs) for the treatment of several neurological diseases is currently under evaluation of phase I/II clinical trials. Clinical application of hNSCs require the development of GMP standardized protocols capable of generating high quantities of reproducible and well characterized stem cells bearing stable functional and genetic properties.

View Article and Find Full Text PDF

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare X-linked inherited lysosomal storage disorder presenting a wide genetic heterogeneity. It is due to pathogenic variants in the IDS gene, causing the deficit of the lysosomal hydrolase iduronate 2-sulfatase, degrading the glycosaminoglycans (GAGs) heparan- and dermatan-sulfate. Based on the presence/absence of neurocognitive signs, commonly two forms are recognized, the severe and the attenuate ones.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of the upper and lower motor neurons (MNs). About 10% of patients have a family history (familial, fALS); however, most patients seem to develop the sporadic form of the disease (sALS). (Cu/Zn superoxide dismutase-1) is the first studied gene among the ones related to ALS.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is an incurable tumor, with a median survival rate of only 14-15 months. Along with heterogeneity and unregulated growth, a central matter in dealing with GBMs is cell invasiveness. Thus, improving prognosis requires finding new agents to inhibit key multiple pathways, even simultaneously.

View Article and Find Full Text PDF

COVID-19 is a viral infection, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized by a complex inflammatory process and clinical immunophenotypes. Nowadays, several alterations of immune response within the respiratory tracts as well as at the level of the peripheral blood have been well documented. Nonetheless, their effects on COVID-19-related cell heterogeneity and disease progression are less defined.

View Article and Find Full Text PDF