This study reports on the immunogenicity and biodistribution of H5 hemagglutinin (HA)-based self-amplifying (sa) mRNA vaccines in mice. Four sa-mRNA vaccines encoding either a secreted full-length HA, a secreted HA head domain, a secreted HA stalk domain, or a full-length membrane-anchored HA were investigated. All vaccines elicited an adaptive immune response.
View Article and Find Full Text PDFThe success of the messenger RNA-based COVID-19 vaccines of Moderna and Pfizer/BioNTech marks the beginning of a new chapter in modern medicine. However, the rapid rise of mRNA therapeutics has resulted in a regulatory framework that is somewhat lagging. The current guidelines either do not apply, do not mention RNA therapeutics, or do not have widely accepted definitions.
View Article and Find Full Text PDFHere, we identified a novel class of compounds which demonstrated good antiviral activity against dengue and Zika virus infection. These derivatives constitute intermediates in the synthesis of indole (ervatamine-silicine) alkaloids and share a tetracyclic structure, with an indole and a piperidine fused to a seven-membered carbocyclic ring. Structure-activity relationship studies indicated the importance of substituent at position C-6 and especially the presence of a benzyl ester for the activity and cytotoxicity of the molecules.
View Article and Find Full Text PDFHere, we report a class of tryptophan trimers and tetramers that inhibit (at low micromolar range) dengue and Zika virus infection These compounds (AL family) have three or four peripheral tryptophan moieties directly linked to a central scaffold through their amino groups; thus, their carboxylic acid groups are free and exposed to the periphery. Structure-activity relationship (SAR) studies demonstrated that the presence of extra phenyl rings with substituents other than COOH at the N1 or C2 position of the indole side chain is a requisite for the antiviral activity against both viruses. The molecules showed potent antiviral activity, with low cytotoxicity, when evaluated on different cell lines.
View Article and Find Full Text PDFBackground: Benzazole and coumarin derivatives are one of the most privileged heterocyclic substructures in the medicinal chemistry with well-known biological features, which include a wide range of versatile biological activities as well as excellent spectroscopic characteristics thus offering their potential application in many research fields.
Objective: The prepared iminocoumarins were synthesized to evaluate their antioxidative potential by using ABTS and FRAP assays and in vitro antiproliferative activity.
Methods: A series of coumarin derivatives containing a 2-benzazole motif were synthesized and evaluated for their antioxidative capacity and antiproliferative activity.
A focused nucleoside library was constructed around a 3'-C-ethynyl-d-ribofuranose sugar scaffold, which was coupled to variously modified purine nucleobases. The resulting nucleosides were probed for their ability to inhibit tumor cell proliferation, as well as for their activity against a panel of relevant human viruses. While C6-aryl substituted purine nucleosides were found to be weakly active, several C7-substituted 7-deazapurine nucleosides elicited potent antiproliferative activity.
View Article and Find Full Text PDFThe endogenous steroid 2-methoxyestradiol (1) has attracted a great interest as a lead compound towards the development of new anti-cancer drugs. Herein, the synthesis, molecular modeling, anti-proliferative and anti-angiogenic effects of ten 2-ethyl and four 2-methoxy analogs of estradiol are reported. The ethyl group was introduced to the steroid A-ring using a novel Friedel-Crafts alkylation protocol.
View Article and Find Full Text PDFChemokines attract leukocytes to sites of infection in a G protein-coupled receptor (GPCR) and glycosaminoglycan (GAG) dependent manner. Therefore, chemokines are crucial molecules for proper functioning of our antimicrobial defense mechanisms. In addition, some chemokines have GPCR-independent defensin-like antimicrobial activities against bacteria and fungi.
View Article and Find Full Text PDFMycoplasmas may colonize tumor tissue in patients. The cytostatic activity of gemcitabine was dramatically decreased in Mycoplasma hyorhinis-infected tumor cell cultures compared with non-infected tumor cell cultures. This mycoplasma-driven drug deamination could be prevented by exogenous administration of the cytidine deaminase (CDA) inhibitor tetrahydrouridine, but also by the natural nucleosides or by a purine nucleoside phosphorylase inhibitor.
View Article and Find Full Text PDFDengue virus (DENV) is a leading cause of illness and death, mainly in the (sub)tropics, where it causes dengue fever and/or the more serious diseases dengue hemorrhagic fever and dengue shock syndrome that are associated with changes in vascular permeability. Despite extensive research, the pathogenesis of DENV is still poorly understood and, although endothelial cells represent the primary fluid barrier of the blood vessels, the extent to which these cells contribute to DENV pathology is still under debate. The primary target cells for DENV are dendritic cells and monocytes/macrophages that release various chemokines and cytokines upon infection, which can activate the endothelium and are thought to play a major role in DENV-induced vascular permeability.
View Article and Find Full Text PDFMethyl-2-amino-5-[2-(4-methoxyphenethyl)]thiophene-3-carboxylate (8 c) is the prototype of a well-defined class of tumor-selective agents. Compound 8 c preferentially inhibited the proliferation of a number of tumor cell lines including many human T-lymphoma/leukemia cells, but also several prostate, renal, central nervous system and liver tumor cell types. Instead, a broad variety of other tumor cell lines including B-lymphomas and HeLa cells were not affected.
View Article and Find Full Text PDFDengue virus (DENV) is an emerging mosquito-borne pathogen that causes cytokine-mediated alterations in the barrier function of the microvascular endothelium, leading to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We observed that DENV (serotype 2) productively infects primary (HMVEC-d) and immortalized (HMEC-1) human dermal microvascular endothelial cells, despite the absence of well-described DENV receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) or the mannose receptor on the cell surface. However, heparan sulfate proteoglycans (HSPGs) were highly expressed on these cells and pre-treatment of HMEC-1 cells with heparinase II or with glycosaminoglycans reduced DENV infectivity up to 90%, suggesting that DENV uses HSPGs as attachment receptor on microvascular endothelial cells.
View Article and Find Full Text PDFAngiogenesis is an important physiological process that is controlled by a precise balance of growth and inhibitory factors in healthy tissues. However, environmental and genetic factors may disturb this delicate balance, resulting in the development of angiogenic diseases, tumour growth and metastasis. During the past decades, extensive research has led to the identification and characterization of genes, proteins and signalling pathways that are involved in neovascularization.
View Article and Find Full Text PDFFast growing biomass plants such as Salix species are promising for use in phytoremediation of contaminated land. This study assessed the seasonal variations and changes with stand age in metal concentrations of S. fragilis L.
View Article and Find Full Text PDFHigh biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus.
View Article and Find Full Text PDFInt J Phytoremediation
September 2005
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts.
View Article and Find Full Text PDFExtractability of Cd, Cr, Cu, Ni, Pb, and Zn in a dredged sediment disposal site was assessed using single extraction procedures (H2O; 0.01 M CaCl2; 1 M NH4OAc; NH4OAc-EDTA; CaCl2-TEA-DTPA). Only Cd and Zn were found to exceed statutory threshold values for total content.
View Article and Find Full Text PDFMeded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet
July 2005
Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet
July 2005
The growth and metal uptake of two willow clones (Salix fragilis 'Belgisch Rood' and Salix viminalis 'Aage') was evaluated in a greenhouse pot experiment with six sediment-derived soils with increasing field Cd levels (0.9-41.4 mg kg-1).
View Article and Find Full Text PDFEnhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing.
View Article and Find Full Text PDFWillow (Salix spp.) stands are often proposed as vegetation covers for the restoration and stabilization of contaminated and derelict land. Planting willows on dredged sediment disposal sites for biomass production can be an alternative to traditional capping techniques.
View Article and Find Full Text PDFFive tree species (Acer pseudoplatanus L., Alnus glutinosa L. Gaertn.
View Article and Find Full Text PDFEnviron Pollut
December 2003
Establishing fast growing willow stands on land disposed contaminated dredged sediment can result in the revaluation of this material and opens possibilities for phytoremediation. A field trial was designed to assess the impact of planting a willow stand (Salix viminalis L. 'Orm') on the dissipation of organic contaminants (mineral oil and PAHs) in dredged sediment.
View Article and Find Full Text PDFSampling can be the source of the greatest errors in the overall results of foliar analysis. This paper reviews the variability in heavy metal concentrations in tree crowns, which is a feature that should be known and understood when designing a suitable leaf sampling procedure. The leaf sampling procedures applied in 75 articles were examined.
View Article and Find Full Text PDF