The value of bone marrow aspirate concentrates for treatment of human knee cartilage lesions is unclear. Most of the studies were performed with intra-articular injections. However, subchondral bone plays an important role in the progression of osteoarthritis.
View Article and Find Full Text PDFIn bone diseases such as osteonecrosis and osteoporosis, a shift toward a preferential differentiation of mesenchymal stromal cells (MSC) into adipocytes at the expense of the osteoblastic lineage is described, leading to excessive accumulation of adipocytes in the bone marrow of the patients. The influence of cytokines and adipokines secreted by adipocytes on skeletal health is already well-documented but the impact of free fatty acids release on bone cell biology and viability is an emerging concept. We have previously demonstrated that the saturated fatty acid (SFA) palmitate (Palm) is cytotoxic for human MSC (hMSC) and osteoblasts whereas oleate (Ole), a monounsaturated fatty acid (MUFA), has no toxic effect.
View Article and Find Full Text PDFIntroduction: Human spontaneous osteonecrosis of the knee (SPONK) is still challenging as the current treatments do not allow the production of hyaline cartilage tissue. The aim of the present study was to explore the therapeutic potential of cartilage regeneration using a new biphasic scaffold (type I collagen/hydroxyapatite) previously loaded or not with concentrated bone marrow cells.
Material And Methods: Female rabbits were operated of one knee to create articular lesions of the trochlea (three holes of 4 × 4mm).
Osteonecrosis of the femoral head (ON) is a multifactorial bone disease that can evolve to a progressive destruction of the hip joint. Different pathogenic processes have been proposed, among them, an increase of bone marrow (BM) fat resulting from adipocyte accumulation. Marrow adipocytes are active BM residents that influence the microenvironment by releasing cytokines, adipokines, and free fatty acids (FA).
View Article and Find Full Text PDFGlucagon plays an essential role in the glycemia maintenance during fasting, but also aggravates hyperglycemia in diabetic patients. A series of analogues of glucagon were synthesized replacing each amino acid of the C-terminal region (residues 15-29) with alanine. The residues affecting the binding to the glucagon receptor are found to be located on one face of the glucagon helix.
View Article and Find Full Text PDFGlucagon is an important hormone for the prevention of hypoglycemia, and contributes to the hyperglycemia observed in diabetic patients, yet very little is known about its receptor structure and the receptor-glucagon interaction. In related receptors, the first extracellular loop, ECL1, is highly variable in length and sequence, suggesting that it might participate in ligand recognition. We applied a variant of the SCAM (Substituted Cysteine Accessibility Method) to the glucagon receptor ECL1 and sequentially mutated positions 197 to 223 to cysteine.
View Article and Find Full Text PDFThe glucagon receptor belongs to the B family of G-protein coupled receptors. Little structural information is available about this receptor and its association with glucagon. We used the substituted cysteine accessibility method and three-dimensional molecular modeling based on the gastrointestinal insulinotropic peptide and glucagon-like peptide 1 receptor structures to study the N-terminal domain of this receptor, a central element for ligand binding and specificity.
View Article and Find Full Text PDFThe novel antiepileptic drug levetiracetam ((2S-(2-oxo-1-pyrrolidinyl)butanamide, KEPPRA possesses a specific binding site in brain, which has very recently been identified as the synaptic vesicle protein SV 2 A. The aim of this study was to evaluate the presence of a levetiracetam binding site in the spinal cord and compare its properties to that in rat brain. We used [(3)H]ucb 30889 ((2S)-2-[4-(3-azidophenyl)-2-oxopyrrolidin-1-yl]butanamide), a levetiracetam analogue, to perform binding assays, photoaffinity labelling and autoradiography experiments, and revealed the presence of SV 2 A by Western-blot analysis.
View Article and Find Full Text PDFUnlabelled: The motilin receptor (MTLR) represents a clinically useful pharmacological target, as agonists binding to the MTLR have gastroprokinetic properties. In order to compare the molecular basis for interaction of the MTLR with motilin and with the non-peptide motilin agonist, erythromycin-A (EM-A), the negatively charged E119 located in the third transmembrane (TM3) region was mutated to D (E119D) and Q (E119Q), respectively, and changes in activity of the mutant receptors were verified.
Methods: Each mutant receptor was stably transfected in CHO-cells containing the Ca2+ indicator apo-aequorin.
When exposed to vasoactive intestinal peptide (VIP), the human wild type VPAC1 receptor expressed in Chinese hamster ovary (CHO) cells is rapidly phosphorylated, desensitized, and internalized in the endosomal compartment and is not re-expressed at the cell membrane within 2 h after agonist removal. The aims of the present work were first to correlate receptor phosphorylation level to internalization and recycling, measured by flow cytometry and in some cases by confocal microscopy using a monoclonal antibody that did not interfere with ligand binding, and second to identify the phosphorylated Ser/Thr residues. Combining receptor mutations and truncations allowed identification of Ser250 (in the second intracellular loop), Thr429, Ser435, Ser448 or Ser449, and Ser455 (all in the distal part of the C terminus) as candidates for VIP-stimulated phosphorylation.
View Article and Find Full Text PDFC-terminally truncated human VPAC(1) receptors were constructed and stably transfected in Chinese hamster ovary (CHO) cells. Selected clones expressing comparable receptor densities were studied for ligand's binding properties, basal and stimulated adenylate cyclase activity. The wild-type (1-457) receptor served as reference.
View Article and Find Full Text PDFWe synthesized a VIP analog that combines mutations that decrease the affinity for the VPAC1 receptor but maintain a high affinity for the VPAC2 receptor with an amino-terminal hexanoylation that increases the affinity for the VPAC2 receptor with a limited decrease in the affinity of the VPAC1 receptor. The resulting Hexanoyl[A19,K(27,28)]VIP had the expected properties of a high affinity for the VPAC2 receptor and a low affinity for the VPAC1 receptor and also a low affinity for the PAC1 and secretin receptors. With a 1000-fold preference for the VPAC2 receptor and a IC50 value of binding of 1 nM, this compound is the most potent and the most selective agonist presently described.
View Article and Find Full Text PDFLevetiracetam (2S-(2-oxo-1-pyrrolidinyl)butanamide, KEPPRA, a novel antiepileptic drug, has been shown to bind to a specific binding site located in the brain (Eur. J. Pharmacol.
View Article and Find Full Text PDFLevetiracetam (2S-(2-oxo-1-pyrrolidinyl)butanamide, KEPPRA, a novel antiepileptic drug, has been shown to bind to a specific binding site located in brain (levetiracetam binding site [Eur. J. Pharmacol.
View Article and Find Full Text PDFThe role in ligand recognition and receptor activation of two adjacent charged residues (lysine 195 and aspartate 196) in the first extracellular loop of the human VPAC(1) receptor was investigated in stably transfected CHO cells expressing the wild type or point mutated receptors.Replacement of lysine 195 by glutamine or of aspartate 196 by asparagine reduced the agonists' ability to stimulate adenylate cyclase activity; VIP behaved like a partial agonist and a partial agonist behaved as an antagonist. The receptor's capacity to recognize agonists was reduced but antagonists' affinity was unaffected.
View Article and Find Full Text PDFWe developed previously VPAC(1) [vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) receptor]>VPAC(2) receptor selective ligands. Replacement of the VIP-Thr(11) by an Arg(11) in these ligands contributed to their selectivity: Arg(11)-VIP had a 200-fold lower affinity when compared with VIP at VPAC(2) receptors as opposed to 3- to 5-fold higher affinity at VPAC(1) receptors. Comparison of the binding and functional properties of related VIP analogues suggested that the VPAC(1) selectivity of Arg(11)-VIP was due to the loss of a hydrogen bond between the hydroxy group of Thr residue and the VPAC(2) receptor, steric hindrance between the Arg side chain and the VPAC(2) receptor and charge attraction by the VPAC(1) receptor.
View Article and Find Full Text PDFThe stimulatory effect of vasoactive intestinal peptide (VIP) on the intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimaeric VPAC(1)/VPAC(2) or mutated receptors. The VIP-induced increase in [Ca(2+)](i) was linearly correlated with receptor density, and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar density of VPAC(2) receptors. The study was performed to establish the receptor sequence responsible for this difference.
View Article and Find Full Text PDFWe have identified two basic residues that are important for the recognition of secretin and vasoactive intestinal peptide (VIP) by their respective receptors. These two peptides containing an Asp residue at position 3 interacted with an arginine residue in transmembrane helix 2 (TM2) of the receptor, and the lysine residue in extracellular loop 1 (ECL1) stabilized the active receptor conformation induced by the ligand. The glucagon receptor possesses a Lys instead of an Arg in TM2, and an Ile instead of Lys in ECL1; it markedly prefers a Gln side chain in position 3 of the ligand.
View Article and Find Full Text PDF1: We investigated the human vasoactive intestinal polypeptide (VIP) receptors VPAC(1) and VPAC(2) mutated at conserved tyrosine residues in the first transmembrane helix (VPAC(1) receptor Y146A and Y150A and VPAC(2) receptor Y130A and Y134A). 2: [(125)I]-Acetyl-His(1) [D-Phe(2), K(15), R(16), L(27)]-VIP (1-7)/GRF (8-27) (referred to as [(125)I]-VPAC(1) antagonist) labelled VPAC(1) binding sites, that displayed high and low affinities for VIP (IC(50) values and per cent of high affinity binding sites: wild-type, 1 nM (57+/-9%) and 160 nM; Y146A, 30 nM (40+/-8%) and 800 nM; Y150A, 4 nM (27+/-8%) and 300 nM). [R(16)]-VIP behaved as a "super agonist" at both mutated VPAC(1) receptors and the efficacies of VIP analogues modified in positions 1, 3 and 6 were significantly decreased.
View Article and Find Full Text PDFThe vasoactive intestinal peptide receptor VPAC(1) is preferentially coupled to G(alpha s) protein but also increases [Ca(2+)](i) through interaction with G(alpha i)/G(alpha q) protein. We evaluated a panel of full, partial and null agonists for their capability to stimulate adenylate cyclase activity in both intact cells and membrane and [Ca(2+)](i) in intact cells transfected with the reporter gene aequorin. In intact cells, the agonists efficacy for cAMP and calcium increase were well, but not linearly correlated: VPAC(1) receptors activated G(alpha s) protein more efficiently but with the same pharmacological profile as the other G proteins.
View Article and Find Full Text PDFThe stimulatory effect of VIP on intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimeric VPAC(1)/VPAC(2), or mutated receptors. The VIP-induced [Ca(2+)](i) increase was linearly correlated with receptor density and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar VPAC(2) receptor density. The study was performed to establish the receptor sequence responsible for that difference.
View Article and Find Full Text PDFReceptor recognition by the Asp(3) residues of vasoactive intestinal peptide and secretin requires the presence of a lysine residue close to the second transmembrane helix (TM2)/first extracellular loop junction and an ionic bond with an arginine residue in TM2. We tested whether the glucagon Gln(3) residue recognizes the equivalent positions in its receptor. Our data revealed that the binding and functional properties of the wild-type glucagon receptor and the K188R mutant were not significantly different, whereas all agonists had markedly lower potencies and affinities at the I195K mutated receptor.
View Article and Find Full Text PDFThe stimulatory effect of vasoactive intestinal peptide (VIP) and analogues on [Ca2+]i has been investigated in chinese hamster ovary (CHO) cells stably transfected with the reporter gene aequorin, and expressing either the human VPAC1or VPAC2 receptor in absence or in presence of the Galpha16. In cells that were not transfected with Galpha16 and expressed a similar density of receptors, the VIP induced [Ca2+]i ncrease was higher in VPAC1 than in VPAC2 receptor expressing cells. In aequorin/Galpha16 cotransfected cells, the VIP-induced response was higher, reaching 70 to 80% of the maximal calcium response, obtained after digitonin treatment, in response to both VPAC1 and VPAC2 receptor stimulation.
View Article and Find Full Text PDFInspection of the amino acid sequence of the human VPAC1 and the VPAC2 receptors after alignment of the conserved residues indicates that the second extracellular loop (EC2) is one amino acid shorter in the VPAC1 receptor due to the lack of a proline residue in position 294. We hypothesized that this could be of importance for receptor structure and/or for ligand recognition. Insertion by directed mutagenesis of a proline in that position (