Publications by authors named "Verspreet J"

Non-concentrated algae storage can bridge the period between algae harvesting and processing while avoiding the stress conditions associated with the concentration step required for concentrate storage. This study aimed to examine organic matter losses during the non-concentrated storage of at pilot-scale. Algae cultures (400-500 L) were stored for up to 12 days either at an 8 °C target temperature or at 19 °C as the average temperature.

View Article and Find Full Text PDF

Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment.

View Article and Find Full Text PDF

The temporary storage of wet algae concentrates enables the decoupling in time of algae harvests and their biorefinery. However, the impact of cultivation and of the harvest conditions on algae quality during preservation is largely unknown. This study aimed to determine the impact of nutrient limitation and of harvest methods on the preservation of biomass.

View Article and Find Full Text PDF

This study aimed to map the nutritional profile and bioactivities of five microalgae that can be grown in Northwest Europe or areas with similar cultivation conditions. Next to the biochemical composition, the in vitro digestibility of carbohydrates, proteins, and lipids was studied for , , , , and species biomass. These microalgae were also assessed for their ability to inhibit the angiotensin-1-converting enzyme (ACE-1, EC 3.

View Article and Find Full Text PDF

While arabinoxylans (AX), an important dietary fiber fraction of wheat-based broiler diets, are known for exerting antinutritional effects in the gastrointestinal (GI) tract of broilers, the prebiotic potential of arabinoxylan-oligosaccharides (AXOS) is also well-documented. However, inconsistent performance responses as well as the effectiveness of low amounts of AXOS used in diets of previously conducted experiments put into question the classical prebiotic route being the sole mode of action of AXOS. The objective of this study was to investigate the effects of dietary AXOS addition on the rate of AX digestion in the gastrointestinal tract of broilers as a function of broiler age to gain more insight into the mode of action of these oligosaccharides.

View Article and Find Full Text PDF

The human gut can be viewed as a flow-through system with a short residence time, a high turnover rate and a spatial gradient of physiological conditions. As a consequence, the gut microbiota is exposed to highly fluctuating environmental determinants presented by the host and diet. Here, we assessed the fermentation and colonisation of insoluble wheat bran by faecal microbiota of three individuals at an unprecedented sampling intensity.

View Article and Find Full Text PDF

Endoxylanases are frequently used in cereal-based broiler feeds to improve the nutritional quality of the feed. It is hypothesized that the age of broilers and the age-related development of their intestinal microbiota influence the efficacy of these enzymes. Hence, the objective of this study was to identify possible age-related changes in arabinoxylan (AX) digestion in the different parts of the gastrointestinal (GI) tract of broilers.

View Article and Find Full Text PDF

Undigestible, insoluble food particles, such as wheat bran, are important dietary constituents that serve as a fermentation substrate for the human gut microbiota. The first step in wheat bran fermentation involves the poorly studied solubilization of fibers from the complex insoluble wheat bran structure. Attachment of bacteria has been suggested to promote the efficient hydrolysis of insoluble substrates, but the mechanisms and drivers of this microbial attachment and colonization, as well as subsequent fermentation remain to be elucidated.

View Article and Find Full Text PDF

Consumption of wheat bran (WB) has been associated with improved gastrointestinal health and a reduced risk for colorectal cancer, cardiovascular diseases and metabolic disorders. These benefits are likely mediated by a combination of mechanisms, including colonic fermentation of the WB fiber, fecal bulking and the prevention of oxidative damage due to its antioxidant capacities. The relative importance of those mechanisms is not known and may differ for each health effect.

View Article and Find Full Text PDF

Dietary modulation can alter the gut microbiota composition and activity, in turn affecting health. Particularly, dietary fibre rich foods, such as wheat bran, are an important nutrient source for the gut microbiota. Several processing methods have been developed to modify the functional, textural and breadmaking properties of wheat bran, which can affect the gut microbiota.

View Article and Find Full Text PDF

There is evidence that a diet low in Fermentable Oligo-, Di-, Monosaccharides And Polyols (FODMAPs) alleviates symptoms in approx. 70% of the patients suffering from irritable bowel syndrome. Through fructans, wheat containing products are a major source of FODMAPs in the western diet.

View Article and Find Full Text PDF

In the present study, we investigated whether reducing the particle size of wheat bran affects the colonizing microbial community using batch fermentations with cecal inocula from seven different chickens. We also investigated the effect of in-feed administration of regular wheat bran (WB; 1,690 μm) and wheat bran with reduced particle size (WB280; 280 μm) on the cecal microbial community composition of broilers. During batch fermentation, WB280 was colonized by a lactic acid-producing community ( and ) and by that contain lactic acid-consuming butyric acid-producing species.

View Article and Find Full Text PDF

The spatial organization of gut microorganisms is important with respect to their functional role in the gut ecosystem. Regional differences in the longitudinal and lateral direction are, however, not frequently studied, given the difficulty to sample these human gut regions in vivo. Particularly the insoluble food particle-associated microbiota is poorly studied.

View Article and Find Full Text PDF

This work aimed at investigating simultaneous hydrolysis of cellulose and in-situ foulant degradation in a cellulose fed superparamagnetic biocatalytic membrane reactor (BMR). In this reactor, a dynamic layer of superparamagnetic bionanocomposites with immobilized cellulolytic enzymes were reversibly immobilized on superparamagnetic polymeric membrane using an external magnetic field. The formation of a dynamic layer of bionanocomposites on the membrane helped to prevent direct membrane-foulant interaction.

View Article and Find Full Text PDF

This study investigates the effect of the physical presence and water binding of wheat bran during bread making, and the possible mechanisms behind this effect. Regular bran, pericarp-enriched bran and synthetic bran-like particles with different water binding capacities and particle sizes were used. Incorporation of regular and pericarp-enriched bran in dough (15% dm) led to a lower oven rise than the control dough.

View Article and Find Full Text PDF

Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet.

View Article and Find Full Text PDF

Yeast-mediated dough fermentation is an important phase in the bread making process. The fermentative performance of yeast cells during fermentation is of critical importance for final bread quality, since yeast cells produce CO and other metabolites that have an influence on dough rheology and bread texture, volume, and taste. Different factors affect the fermentative performance of yeast cells during dough fermentation, including dough ingredients, fermentation conditions, the type of yeast strain used and yeast pregrowth conditions.

View Article and Find Full Text PDF

A liquid chromatography-mass spectrometry (LC-MS) library is presented containing the relative retention times of 28 fructan oligomers and MS spectra of 18 of them. It includes the main representatives of all fructan classes occurring in nature and with a degree of polymerization between three and five. This library enables a rapid and unambiguous detection of these 18 fructan structures in any type of sample without the need for fructan purification or the synthesis of fructan standards.

View Article and Find Full Text PDF

The aim of this study was to determine the impact of different wheat bran fractions on the gut microbiota and fat binding capacity to explain their differential effects on metabolic and inflammatory disorders induced by a western diet (WD) in mice. Wheat bran derived arabinoxylan oligosaccharides (AXOS), a crude fraction of wheat bran (WB), or the same wheat bran with reduced particle size (WBs) were added to the WD of mice for 8 weeks. AXOS shifted the gut microbiota composition, blunted Clostridium and Turicibacter genera and strongly promoted Bifidobacterium and Butyricicoccus genera, independently of changes in gut antimicrobial peptide expression.

View Article and Find Full Text PDF

Water binding is suggested to be key in the deleterious effect of wheat bran on bread quality. This study investigates water mobility and biopolymer behavior during bran-rich bread making and storage, using H NMR. Coarse, ground, and pericarp-enriched bran were incorporated in bread dough, and their impact on freshly baked and stored bread properties was assessed.

View Article and Find Full Text PDF

In this study, the molecular mobility of water and biopolymers in coarse, ground, and pericarp-enriched (PE) wheat bran and refined flour was investigated using time-domain proton nuclear magnetic resonance relaxometry, and related to their hydration properties. Several specific proton populations were present in the bran samples but not in flour. These populations were mainly assigned to protons of bran-related compounds such as arabinoxylan, cellulose, and lipids.

View Article and Find Full Text PDF

Gut microbiota research reveals a vital role for the luminal and mucosal gut microbiota in human health. Fewer studies, however, have characterized the microbiome associated with undigested, insoluble dietary particles in the gut. These particles can act as a food source for bacteria and offer a physical platform to which they can attach.

View Article and Find Full Text PDF

Identification and use of yeast strains that are unable to consume one or more otherwise fermentable substrate types could allow a more controlled fermentation process with more flexibility regarding fermentation times. In this study, Saccharomyces cerevisiae strains with different capacities to consume substrates present in wheat were selected to investigate the impact of substrate limitation on dough fermentation and final bread volume. Results show that fermentation of dough with maltose-negative strains relies on the presence of fructan and sucrose as fermentable substrates and can be used for regular bread making.

View Article and Find Full Text PDF

Wheat bran (WB) is a constituent of whole grain products with beneficial effects for human health. Within the human colon, such insoluble particles may be colonized by specific microbial teams which can stimulate cross-feeding, leading to a more efficient carbohydrate fermentation and an increased butyrate production. We investigated the extent to which WB fractions with different properties affect the fermentation of other carbohydrates in the colon.

View Article and Find Full Text PDF

Feed additives, including prebiotics, are commonly used alternatives to antimicrobial growth promoters to improve gut health and performance in broilers. Wheat bran is a highly concentrated source of (in)soluble fiber which is partly degraded by the gut microbiota. The aim of the present study was to investigate the potential of wheat bran as such to reduce colonization of the cecum and shedding of Salmonella bacteria in vivo.

View Article and Find Full Text PDF